Targeting αENaC with an epithelial RNAi trigger delivery platform for the treatment of cystic fibrosis

Erik W. Bush, PhD
Sr. Director, Extrahepatic Targeting, Arrowhead Pharmaceuticals
European Respiratory Society International Congress
September 16, 2018
Disclosures

• I am an employee and shareholder of Arrowhead Pharmaceuticals, Inc.
Increased epithelial sodium channel (ENaC) activity promotes mucus dehydration in cystic fibrosis lung disease

- Hypomorphic alleles of ENaC subunits increase mucociliary transport, resulting in milder CF phenotypes
- ENaC inhibitors promise pan-genotypic approach, but small molecules have encountered challenges in clinic

"The rational design of new ENaC blockers must include not only the provision of a sustained increase in mucociliary clearance, but also the avoidance of clinically significant renal exposure..."

O'Riordan 2014
TRiM™ platform: Targeted RNAi Molecules

ARO-ENaC

• Rules and algorithms allow selection of optimized RNAi trigger sequences
• Limit cross-reactivity with off-target genes
• Maximize innate stability
• Rational use and placement of modifying chemistries
• Active endosomal escape chemistries not required
• Targeting ligands and linker chemistries improve delivery to target tissues
• Integrin αvβ6 ligands facilitate uptake and endocytosis of triggers by pulmonary epithelium

EpL = integrin αvβ6 ligand
Epithelial targeting ligands (EpL) facilitate RNAi trigger internalization by integrin αvβ6+ cells in vitro

Receptor internalization
On-cell Western assay

Red: Cy3 labeled EpL1 conjugate
Green: actin
Blue: nucleus

IC50 = 21 nM
IC50 = 3597 nM

Presented at ERS International Congress 2018
EpL-trigger conjugates are internalized by human bronchial epithelial cells and reduce αENaC expression and activity.

Fully differentiated HBE cells in ALI culture

αENaC mRNA expression

Amiloride-sensitive current

Airway surface liquid volume

Courtesy Matthias Salathe
EpL-trigger conjugates are internalized by rat pulmonary epithelial cells in vivo following oropharyngeal (OP)delivery.
EpL-trigger conjugates silence lung αENaC expression in vivo

Rat whole lung αENaC mRNA expression

Epl1-trigger conjugate

Day 1: IT dose 2 mg/kg; Day 9 sacrifice

Relative expression

Vehicle Epl-trigger

-58%

Immunohistochemistry with αENaC antibody

Red: αENaC
Green: actin
Blue: nucleus

Presented at ERS International Congress 2018
EpL-trigger conjugates improve potency and uniformity of αENaC mRNA silencing in the lung, with durable reduction in target expression.

Rat whole lung αENaC expression

EpL2-trigger2 conjugate

Day 1-3: OP dose; Day 9 sacrifice

<table>
<thead>
<tr>
<th>Dose Level (mg/kg)</th>
<th>Relative expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.5</td>
</tr>
<tr>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>0.7</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- EpL-trigger

Rat whole lung αENaC expression

Day 1, 2: OP dose 0.7 mg/kg EpL2-trigger2

<table>
<thead>
<tr>
<th>Study day</th>
<th>Relative expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>0.25</td>
</tr>
<tr>
<td>20</td>
<td>0.50</td>
</tr>
<tr>
<td>30</td>
<td>0.75</td>
</tr>
<tr>
<td>40</td>
<td>1.00</td>
</tr>
<tr>
<td>50</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Durable mRNA silencing supports every other week (or less frequent) dose regimens.
Aerosol inhalation improves delivery efficiency of EpL-αENaC RNAi trigger conjugates

- No changes in renal αENaC mRNA expression or serum potassium levels
- Well-tolerated, with no significant findings in clinical chemistry, hematology or histopathology
αENaC silencing in lung does not cause pulmonary edema

Presented at ERS International Congress 2018

Extravascular lung water index

Rat whole lung αENaC expression

Day 1, 2: IT dose 4 mg/kg EpL1-trigger
Day 5 sacrifice

Extravascular lung water index

Relative expression

<table>
<thead>
<tr>
<th></th>
<th>Vehicle</th>
<th>EpL-trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.67 ± 0.1</td>
</tr>
</tbody>
</table>

- 83%

EVLWI (ml/kg)

<table>
<thead>
<tr>
<th></th>
<th>Vehicle</th>
<th>EpL-trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.0</td>
<td>2.2 ± 0.1</td>
</tr>
</tbody>
</table>

Course and evaluation of experimental pulmonary edema
αENaC silencing does not exacerbate pulmonary edema or slow its resolution following oleic acid-induced lung injury

- Rats received IT EpL conjugate at dose that silenced >80% αENaC mRNA in lung
- Lung injury induced with IV oleic acid
- Monitor resolution of pulmonary edema over 48 hr post-injury
Sheep mucociliary clearance

Mucociliary clearance measurements: pre-dose baseline and Day 17
- Inhalation of aerosolized 99mTc-labeled sulfur colloid
- Clearance measured via gamma imaging (5 min intervals over two hours)

Group 1 (n=3): aerosolized EpL2-trigger2 conjugate
- 0.07 mg/kg deposited dose on Days 1-3

Group 2 (n=2): aerosolized amiloride (3 mL 3 mM)
- 3 mL 3 mM immediately prior to MCC scan (1-2 hour effect in lung)

Presented at ERS International Congress 2018
Sheep mucociliary clearance
Amiloride administered immediately prior to scan

Presented at ERS International Congress 2018

Courtesy Juan Sabater
Sheep mucociliary clearance
EpL2-trigger2 conjugate administered 14-16 days prior to scan

Presented at ERS International Congress 2018

Sheep mucociliary clearance

% retention of baseline baseline
EpL2-trigger2 + 7%
amiloride + 22%

Courtesy Juan Sabater
Conclusions

• Inhaled EpL-αENaC RNAi trigger conjugates produce selective, durable, renal-sparing silencing of pulmonary αENaC expression

• Deep αENaC mRNA silencing in the lung does not cause, exacerbate or slow the resolution of pulmonary edema

• Improved mucociliary clearance is observed in sheep two weeks after inhalation of aerosolized conjugate

• ARO-ENaC for cystic fibrosis is Arrowhead’s first program to employ the pulmonary epithelial delivery platform

• The platform may be adapted to additional therapeutic targets in the pulmonary epithelium, particularly those that are currently inaccessible to traditional small molecule or antibody approaches
Acknowledgements

Arrowhead

- Zhen Li
- Anthony Nicholas
- Thomas Schluep
- Tao Pei
- Xiaokai Li
- Agnieszka Glebocka
- Rui Zhu
- Bo Chen
- Holly Hamilton
- Julia Hegge
- Ine Kuipers
- Jyoti Srivastava

Collaborations and advisors

- Steven Rowe, MD
- Burton Dickey, MD
- Juan Sabater, MD
- Marcus Mall, MD
- Matthias Salathe, MD

Presented at ERS International Congress 2018