Cardiometabolic Virtual Investor Event November 9, 2022

Welcome and Introductions

Vince Anzalone, CFA Vice President, Finance & Investor Relations Arrowhead Pharmaceuticals

Cardiometabolic Virtual Investor Event November 9, 2022

Safe Harbor Statement

This presentation contains forward-looking statements within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995. These statements are based upon our current expectations and speak only as of the date hereof. Our actual results may differ materially and adversely from those expressed in any forward-looking statements as a result of various factors and uncertainties, including, without limitation, our developmental stage and limited operating history, our ability to successfully and timely develop products, enter into collaborations and achieve other projected milestones, rapid technological change in our markets, demand for our future products, legislative, regulatory and competitive developments and general economic conditions. Our Annual Report on Form 10-K, recent and forthcoming Quarterly Reports on Form 10-Q, recent Current Reports on Forms 8-K, and other SEC filings discuss some of the important risk factors that may affect our ability to achieve the anticipated results, as well as our business, results of operations and financial condition. Readers are cautioned not to place undue reliance on these forward-looking statements. Additionally, Arrowhead disclaims any intent to update these forward-looking statements to reflect subsequent developments.

Agenda

- 10:00-10:10 Welcome and Introductions Vince Anzalone
- 10:10-10:20 ARO-ANG3 ARCHES-2 AHA Encore Robert Rosenson
- 10:20-10:30 ARO-APOC3 SHASTA-2 AHA Encore Christie Ballantyne
- 10:30-10:40 FCS, SHTG, and Pancreatitis Christie Ballantyne
- 10:40-10:50 Cardiometabolic/Lipid Treatment Landscape and Residual Risk Robert Rosenson
- 10:50-11:15 Journey From Early Development to Registration Path Javier San Martin
- 11:15-11:25 Concluding Remarks Chris Anzalone
- 11:25-11:45 Q&A Panel

Panelists

Robert Rosenson, MD

Director, Metabolism and Lipids Unit, Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai Icahn School of Medicine, New York, New York, USA

Christie Ballanytne, MD

Center for Cardiometabolic Disease Prevention Baylor College of Medicine, Houston, Texas

Vince Anzalone, CFA

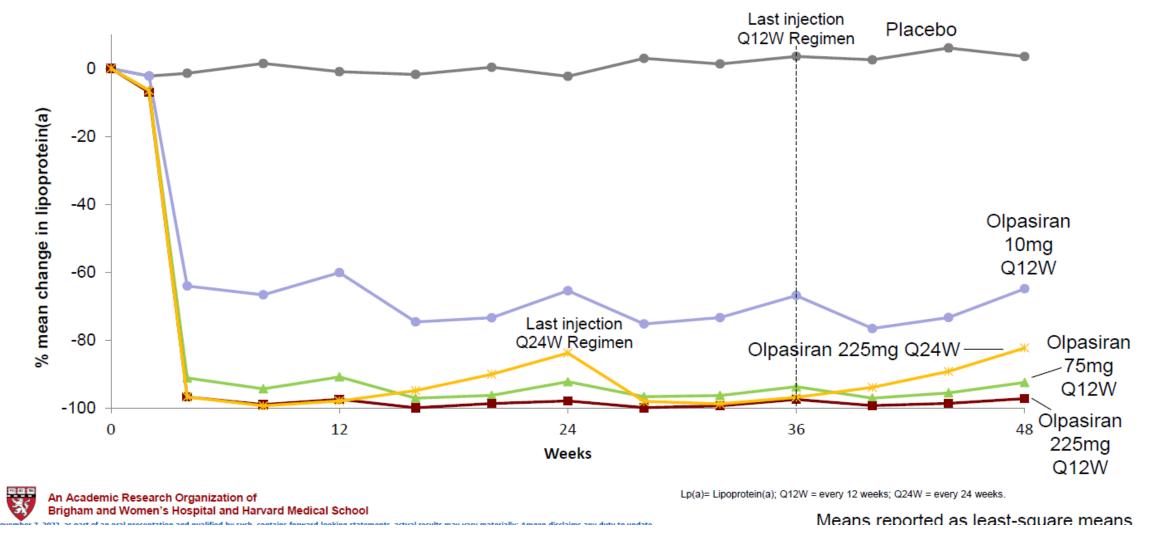
Vice President, Finance & Investor Relations Arrowhead Pharmaceuticals

Chris Anzalone, PhD

President and CEO Arrowhead Pharmaceuticals

Javier San Martin, MD

Chief Medical Officer Arrowhead Pharmaceuticals



Royalty Sale Allows Arrowhead to Invest in High Value Opportunities

- Receive \$250 million upfront from Royalty Pharma for olpasiran royalty stream
- Eligible to receive additional:
 - \$100 million in development and regulatory milestones
 - \$60 million in sales milestones
- Retain ownership of all \$400 million in remaining development, regulatory, and sales milestones from Amgen
- Immediate cash to reinvest in our business and up to \$560 million additional cash as olpasiran progresses

Olpasiran Data Potentially Best in Class

Ongoing Cardiometabolic Studies

Program	Study	Indication	Study Title	Status
	PALISADE	FCS	A Phase 3 Study to Evaluate the Efficacy and Safety of ARO-APOC3 in Adults with Familial Chylomicronemia Syndrome	Active, Recruiting
	SHASTA-2	sHTG	A Double-Blind, Placebo-Controlled Phase 2b Study to Evaluate the Efficacy and Safety of ARO-APOC3 in Adults with Severe Hypertriglyceridemia	Fully Enrolled
PROGRAM	MUIR	Mixed Dyslipidemia	A Double-Blind, Placebo-controlled Phase 2b Study to Evaluate the Efficacy and Safety of ARO-APOC3 in Adults with Mixed Dyslipidemia and open-label extension	Fully Enrolled
	Gateway	HoFH	Phase 2 Study to Evaluate the Safety and Efficacy of ARO-ANG3 in Subjects with Homozygous Familial Hypercholesterolemia (HoFH) and open-label extension	Fully Enrolled
Vista Program	Arches-2	Mixed Dyslipidemia	A Double-blind, Placebo-controlled Phase 2b Study to Evaluate the Efficacy and Safety of ARO-ANG3 in Adults with Mixed Dyslipidemia and open-label extension	Fully Enrolled

American Heart Association Encore

Robert Rosenson, MD Mount Sinai Icahn School of Medicine, New York, New York, USA

Cardiometabolic Virtual Investor Event November 9, 2022

#AHA22

ARO-ANG3, an Investigational RNAi Therapeutic, Decreases Serum Angiopoietin-like Protein 3, Triglycerides, and Cholesterol in Patients With Mixed Dyslipidemia

Robert S Rosenson, M.D.

Icahn School of Medicine at Mount Sinai, New York

On behalf of the ARCHES-2 Study Team

Cardiometabolic Virtual Investor Event November 9, 2022

Presenter

RS Rosenson reports grant/research support from (all paid to institution, not individual): Amgen, Arrowhead, Novartis, Eli Lilly, Regeneron; consulting fees from Amgen, Arrowhead, CRISPR Therapeutics, Eli Lilly, Lipigon, Novartis, Precision Biosciences, Regeneron, UltraGenyx, Verve; non-promotional speaking fee from Amgen and Kowa; and other support from MediMergent, LLC (significant); UpToDate, Inc. stock shareholder (significant).

Co-Authors

GF Watts reports grants and/or honoraria from Amgen, Novartis, and Sanofi-Regeneron.

D Gaudet reports grants and/or honoraria from Acasti, Akcea, Allergan, Amryt pharma, Amgen, Applied Therapeutics, Arrowhead, AstraZeneca, Boehringer-Ingelheim, Dalcor Pharma, Eli Lilly, Esperion, Institut de cardiologie de Montréal, Ionis, Kowa, the Medicine Company, NovoNordisk, Pfizer, Regeneron, UniQure, and Verve Therapeutics.

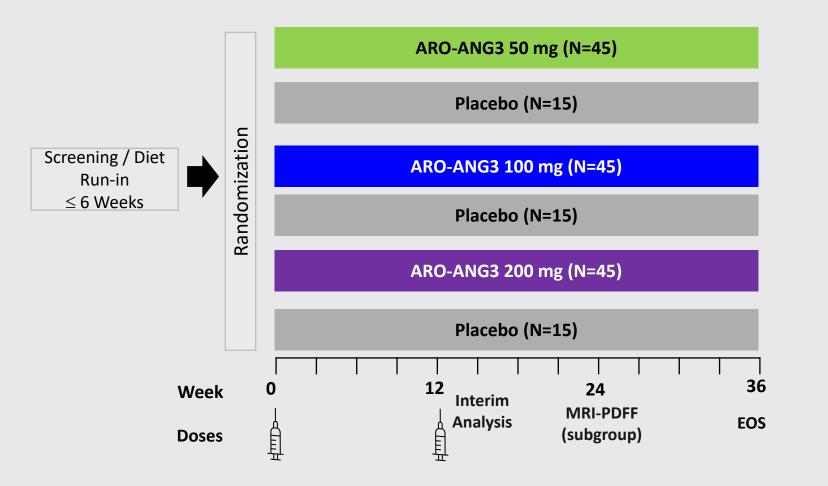
D Altamirano has no disclosures

R Fu, T Chang and J San Martin are all current employees of Arrowhead Pharmaceuticals

RA Hegele reports honoraria and/or speaker's fees from Acasti, Akcea/Ionis, Amgen, HLS Therapeutics, and Sanofi

CM Ballantyne reports grants and/or honoraria from Abbott Diagnostic, Akcea, Althera, Amarin, Amgen, Arrowhead, AstraZeneca, Denka Seiken, Esperion, Genentech, Gilead, Illumina, Ionis, Matinas BioPharma Inc, Merck, New Amsterdam, Novartis, Novo Nordisk, Pfizer, Regeneron, Roche Diagnostic, and Sanofi-Synthelabo.

SJ Nicholls reports grants and/or honoraria from Akcea, Amarin, Amgen, Anthera, Arrowhead Pharmaceuticals Inc, AstraZeneca, Boehringer Ingelheim, Cerenis, CSL Behring, Eli Lilly, Esperion, InfraReDx, LipoScience, The Medicines Company, Merck, New Amsterdam Pharma, Novartis, Omthera, Resverlogix, Roche, Sanofi-Regeneron, and Takeda.


Angiopoietin-like protein 3 (ANGPTL3) as a Target to Treat Dyslipidemia

- Dyslipidemia is a major risk factor for cardiovascular disease (CVD) and residual lipoprotein risk of CVD persists even with current standard of care (including PCSK9 inhibitors)
- ANGPTL3 is a key regulator of lipid and lipoprotein metabolism with multiple potential modes of action, including inhibition of lipoprotein lipase (LPL) and endothelial lipase (EL)
- Loss of function mutations in *ANGPTL3* lead to enhanced LPL and EL activity, resulting in:
 - Low Triglycerides (TG), LDL-C, VLDL-C, and HDL-C
 - Reduced risk of Coronary Artery Disease^{1,2}
 - No known adverse phenotype associated with genetic deficiency in ANGPTL3
- ARO-ANG3 is an investigational, hepatocyte-targeted RNA interference (RNAi) therapeutic designed to specifically silence *ANGPTL3* mRNA expression and mimic ANGPTL3 deficiency

ARCHES-2: Ongoing Double-blind, Placebo-controlled, Dose Ranging Study Of ARO-ANG3 In Subjects With Mixed Dyslipidemia

Study Population:

- fasting TG between 150-499 mg/dL and either
 - LDL-C \geq 70 mg/dL or
 - Non-HDL-C \geq 100 mg/dL
- Stable optimal statin therapy

Key Endpoints*

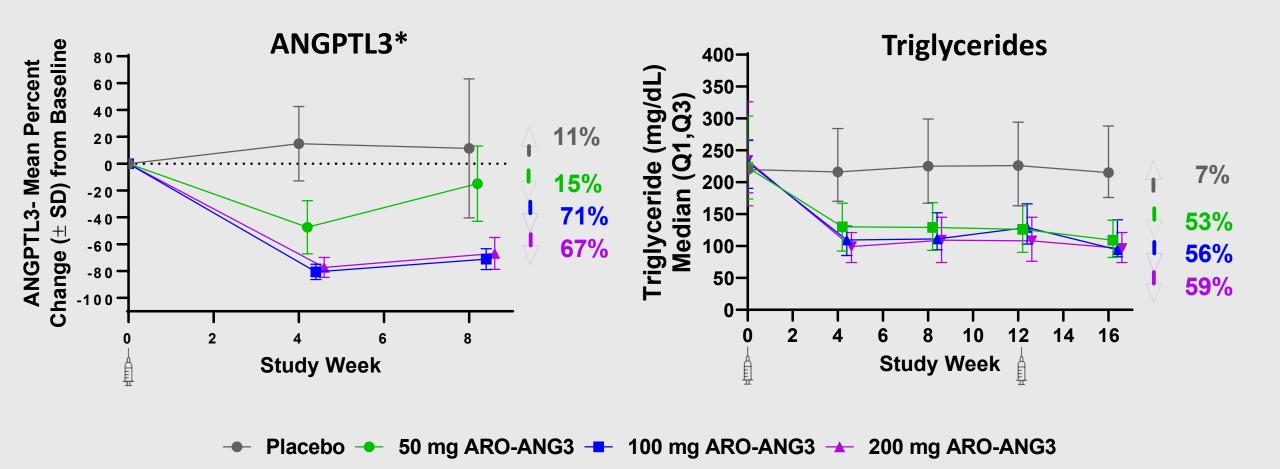
- Serum TG
- ANGPTL3
- Non-HDL-C
- АроВ
- LDL-C
- Remnant cholesterol
- HDL-C
- Liver fat fraction by MRI-PDFF (subgroup)
 35 subjects with liver fat fraction ≥ 8% at
 - 35 subjects with liver fat fraction ≥ 8% at baseline were evaluated again at Week 24

Interim Analysis

• Conducted when all subjects reached Week 12 (Data cutoff 06 Jul 2022), Week 16 data reported

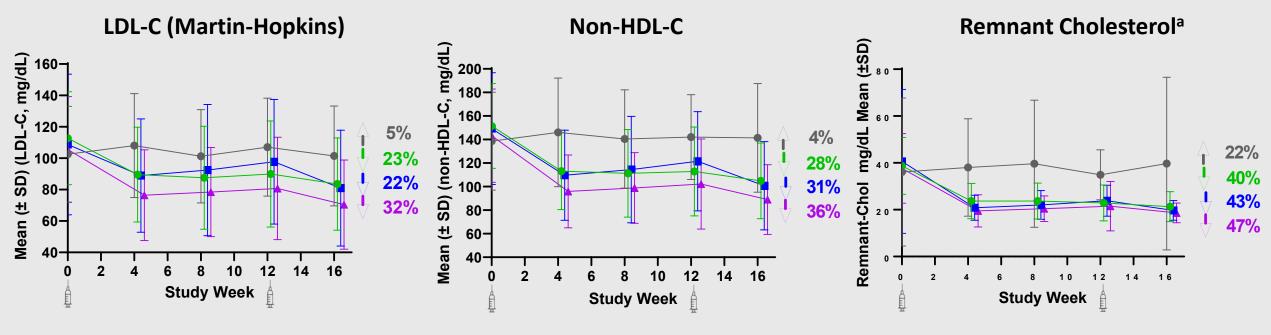
* All samples taken after \geq 10 hour fast

Baseline Characteristics

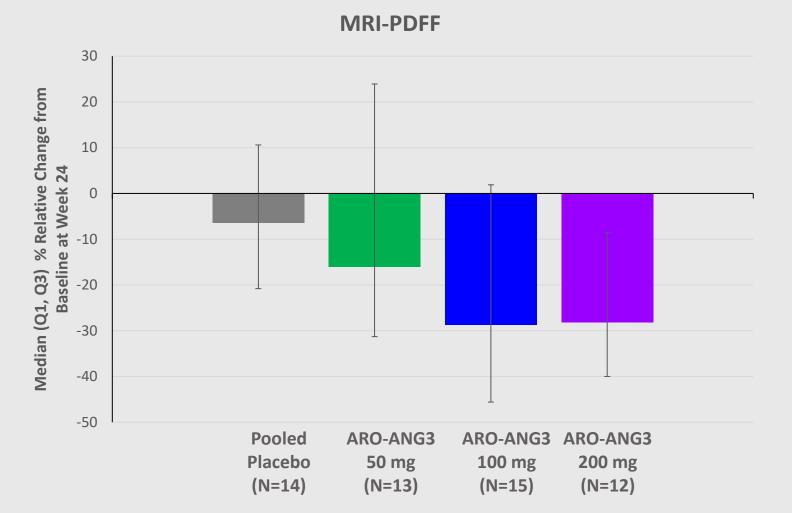

	Pooled Placebo		ARO-ANG3	
	(N=51)	50 mg (N=51)	100 mg (N=50)	200 mg (N=51)
Mean (SD) age, years	60.2 (11.3)	60.4 (12.7)	60.1 (10.0)	61.5 (12.5)
Female, n (%)	24 (47)	25 (49)	21 (42)	24 (47)
White, n (%)	48 (94)	49 (96)	49 (98)	49 (96)
Mean (SD) BMI, kg/m ²	33.0 (6.8)	33.3 (4.7)	32.6 (5.5)	31.6 (5.5)
Mean (SD) ANGPTL3, ^a µg/L	84.8 (27.7) n=11	74.1 (34.2) n=7	68.9 (10.6) n=5	84.7 (18.1) n=9
Median (Q1, Q3) TG, mg/dL	219.9 (163.2, 266.8)	223.3 (173.8, 303.3)	231.2 (190.5, 265.4)	234.1 (183.5, 326.2)
Mean (SD) LDL-C (Martin Hopkins), mg/dL	102.5 (30.6)	112.8 (29.7)	108.7 (44.8)	105.6 (33.7)
Mean (SD) non-HDL-C, mg/dL	138.6 (41.6)	151.5 (36.0)	149.3 (47.5)	143.3 (39.6)
Mean (SD) ApoB, mg/dL	95.7 (24.1)	106.8 (23.4)	99.6 (26.2)	94.9 (25.0)
Mean (SD) remnant cholesterol, ^b mg/dL	36.1 (31.6)	38.7 (12.1)	40.6 (30.8)	37.6 (14.9)
Mean (SD) HDL-C, mg/dL	41.6 (11.9)	43.2 (13.3)	39.9 (10.6)	42.3 (13.6)

^a Limited ANGPTL3 results available at the data cutoff date (06 Jul 2022);
 ^b Based on calculation: remnant cholesterol = (total cholesterol) - (HDL-C) - (LDL-C (Martin-Hopkins))

Cardiometabolic Virtual Investor Event November 9, 2022


ARO-ANG3 Decreases Serum ANGPTL3 and Triglycerides

ARO-ANG3 Decreases Serum LDL-C, Non-HDL-C And Remnant Cholesterol


- Placebo - 50 mg ARO-ANG3 - 100 mg ARO-ANG3 - 200 mg ARO-ANG3

- ARO-ANG3 also reduced ApoB and HDL-C
 - Mean ApoB decreased by 13.2% to 21.8% at Week 16, compared with 0.0% for placebo
 - Mean HDL-C decreased by 17.3% to 30.6% at Week 16, compared with 2.1 % increase for placebo

^a Based on calculation: remnant cholesterol = (total cholesterol) - (HDL-C) - (LDL-C _{Cardior} (Martin-Hopkins))

Data To Date Suggest ARO-ANG3 is Associated with Reduced **Liver Fat Fraction**

 Subgroup of 35 Subjects with liver fat fraction of >8% at baseline were selected for additional MRI-PDFF at Week 24

 One subject (<1%) had a transient elevation of ALT (>3x upper limit of normal (no elevated total bilirubin))

America Heart Association

Liver Safety With ANGPTL3 Inhibitors Has Been Disparate and Compound Specific

Mechanism	Compound	Study Population	Hepatic Enzymes	Hepatic Fat Fraction
ANGPTL3 mAb ^a	Evinacumab	Severe HTG	No change	No change from baseline to 24 weeks with interquartile range of -23% to +39%.
ANGPTL3 ASO ^b	Vupanorsen	Mixed Hyperlipidemia	Dose dependent increase in AST/ALT >3x ULN up to 33.3 and 44.4% respectively	Dose-dependent increase in hepatic fat fraction up to 76%
ANGPTL3 siRNA	ARO-ANG3	Mixed Hyperlipidemia	No increases in transaminases	Dose-dependent decrease in hepatic fat fraction up to 30%

^a Rosenson RS, et al. Evinacumab in severe hypertriglyceridemia with or without lipoprotein lipase pathway mutations: a phase 2 randomized trial. Nat Med 2022 (accepted).

^b Bergmark BA, et al. Effect of vupanorsen on non-HDL lipoprotein cholesterol levels in statin-treated patients with elevated cholesterol: TRANSLATE-TIMI 70. Circulation 2022;45:1377-1386

Aggregated Summary Of Adverse Events

# of Subjects Reporting ≥ 1 Treatment Emergent Adverse Event* (TEAE) N (%)	131/203 (65%)
TEAEs occurring in <a>> 5 subjects	N (%)
COVID-19 Urinary tract infection Upper respiratory infection Headache Injection site pain Diabetes (Diabetes mellitus, Type 2 diabetes mellitus, glycosylated hemoglobin increase) Nausea Back pain Diarrhea Dizziness Hypertension Injection site erythema Osteoarthritis	$\begin{array}{c} 22 \ (11\%) \\ 16 \ (8\%) \\ 13 \ (6\%) \\ 12 \ (6\%) \\ 11 \ (5\%) \\ 9 \ (4\%) \\ \end{array}$ $\begin{array}{c} 8 \ (4\%) \\ 7 \ (3\%) \\ 5 \ (2\%) \\ 5 \ (2\%) \\ 5 \ (2\%) \\ 5 \ (2\%) \\ 5 \ (2\%) \\ 5 \ (2\%) \\ 5 \ (2\%) \\ \end{array}$
Treatment-related TEAEs	39 (19%)
Serious TEAEs	9 (4%)
TEAEs leading to drug discontinuation, dose interruptions, or study withdrawal	1 (<1%)
TEAEs causing deaths Cardiometabolic Virtual Investor Ever	1 (<1%)

- TEAEs reported to date are consistent with those expected in this patient population and with associated underlying comorbidities
- Mean change from baseline in HbA1c at Week 16 across cohorts was 0.16% to 0.25% in subjects receiving ARO-ANG3 and -0.05% in subjects receiving placebo, driven by patients with baseline diabetes
- 1 death due to myocardial infarction in subject with multiple recent history of cardiovascular events (eg, CAD, STEMI, PCI, PAD, CHF)
 - Event occurred ~10 weeks after dosing of blinded investigational product and was considered unrelated to study drug.

*To maintain data blind, all TEAEs were pooled regardless of treatment assignment

ARCHES-2 : Data cutoff 06 Jul 2022

Cardiometabolic Virtual Investor Event November 9, 2022

Interim Analysis of ARCHES-2 Study of ARO-ANG3 Suggests Favorable Changes in Lipoproteins in Subjects With Mixed Dyslipidemia

- In subjects with mixed dyslipidemia who had baseline median TGs of 220 mg to 234 mg/dL, treatment with ARO-ANG3 at doses of 50 mg, 100 mg or 200 mg ARO-ANG3 resulted in substantial reductions of:
 - ANGPTL3 up to 71% at Week 8
 - TGs up to 59% at Week 16
 - LDL-C up to 32% at Week 16
- ARO-ANG3 is associated with relative reduction in liver fat fraction at Week 24, with no AEs related to LFT changes reported to date
- TEAEs reported to date are consistent with those expected in this patient population and with associated underlying comorbidities
- The favorable changes in serum lipids and lipoproteins support the potential value of ARO-ANG3 for the treatment of mixed dyslipidemia in patients at risk of atherosclerotic cardiovascular disease

American Heart Association Encore

Christie Ballantyne, MD Baylor College of Medicine, Houston, Texas

Cardiometabolic Virtual Investor Event November 9, 2022

#AHA22

ARO-APOC3, an Investigational RNAi Therapeutic, Decreases Serum Apolipoprotein C3, Triglyceride, and Non-HDL-C Concentrations While Increasing HDL-C in Patients With Severe Hypertriglyceridemia

Christie M Ballantyne, MD Baylor College of Medicine on behalf of the SHASTA-2 Study Team

Cardiometabolic Virtual Investor Event November 9, 2022

American Heart

Association

Presenter

American Heart Association

CM Ballantyne reports grants and/or honoraria from Abbott Diagnostic, Akcea, Althera, Amarin, Amgen, Arrowhead, AstraZeneca, Denka Seiken, Esperion, Genentech, Gilead, Illumina, Ionis, Matinas BioPharma Inc, Merck, New Amsterdam, Novartis, Novo Nordisk, Pfizer, Regeneron, Roche Diagnostic, and Sanofi-Synthelabo.

Co-Authors

GF Watts reports grants and/or honoraria from Amgen, Novartis, and Sanofi-Regeneron.

D Gaudet reports grants and/or honoraria from Acasti, Akcea, Allergan, Amryt pharma, Amgen, Applied Therapeutics, Arrowhead, AstraZeneca, Boehringer-Ingelheim, Dalcor Pharma, Eli Lilly, Esperion, Institut de Cardiologie de Montréal, Ionis, Kowa, the Medicine Company, NovoNordisk, Pfizer, Regeneron, UniQure, and Verve Therapeutics.

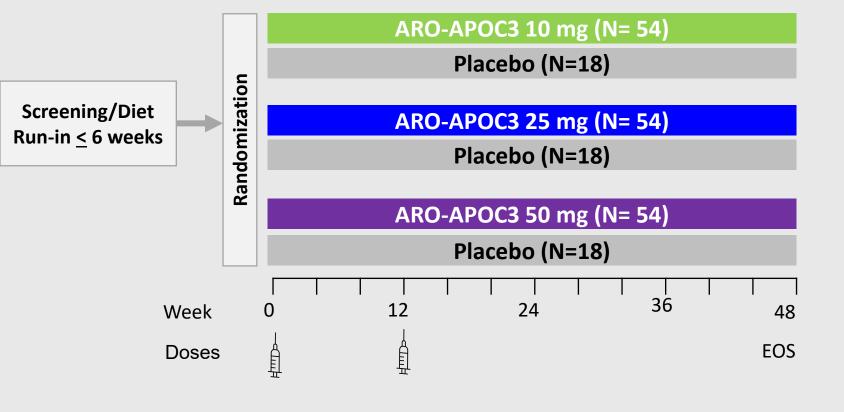
S Vasas has no disclosures.

R Fu, S Melquist, H Moradi and J San Martin are all current employees of Arrowhead Pharmaceuticals

RA Hegele reports honoraria and/or speaker's fees from Acasti, Akcea/Ionis, Amgen, HLS Therapeutics, and Sanofi.

RS Rosenson reports grant/research support from (all paid to institution, not individual): Amgen, Arrowhead, Novartis, Eli Lilly, Regeneron; consulting fees from Amgen, Arrowhead, CRISPR Therapeutics, Eli Lilly, Lipigon, Novartis, Precision Biosciences, Regeneron, UltraGenyx, Verve; non-promotional speaking fee from Amgen and Kowa; other support from MediMergent, LLC (significant); and is an UpToDate, Inc. stock shareholder (significant).

SJ Nicholls reports grants and/or honoraria from Akcea, Amarin, Amgen, Anthera, Arrowhead Pharmaceuticals Inc, AstraZeneca, Boehringer Ingelheim, Cerenis, CSL Behring, Eli Lilly, Esperion, InfraReDx, LipoScience, The Medicines Company, Merck, New Amsterdam Pharma, Novartis, Omthera, Resverlogix, Roche, Sanofi-Regeneron, and Takeda.


Role of Apolipoprotein C3-Targeted Therapies in Severe Hypertriglyceridemia

- Severe hypertriglyceridemia (SHTG) significantly increases risk of acute pancreatitis.
- Currently, there are limited effective therapies to treat SHTG
- Apolipoprotein C3 (APOC3) regulates circulating levels of triglycerides (TGs) and lipoprotein metabolism by inhibiting lipoprotein lipase-dependent and –independent pathways.
- Loss of function mutations in *APOC3* are associated with:
 - Low TG, chylomicrons, VLDL-C, remnant cholesterol and increased levels of HDL-C
 - Reduced risk of cardiovascular disease (CVD)
 - No known adverse phenotype associated with genetic deficiency in *APOC3*
- ARO-APOC3 is an investigational, hepatocyte-targeted RNA interference (RNAi) therapeutic designed to specifically silence hepatic *APOC3* mRNA expression and reduce circulating APOC3 and TGs.
- Phase 1 studies of ARO-APOC3 in subjects with hypertriglyceridemia resulted in robust and sustained reductions in TGs and non-HDL-C, increases in HDL-C, and with a safety profile supportive of later stage clinical development

SHASTA 2: An Ongoing Double-blind, Placebo-controlled, Dose Ranging Study of ARO-APOC3 in Subjects With SHTG

Study Population:

- SHTG history of TG > 500 mg/dL and
- fasting TG of 500 4,000 mg/dL during screening period

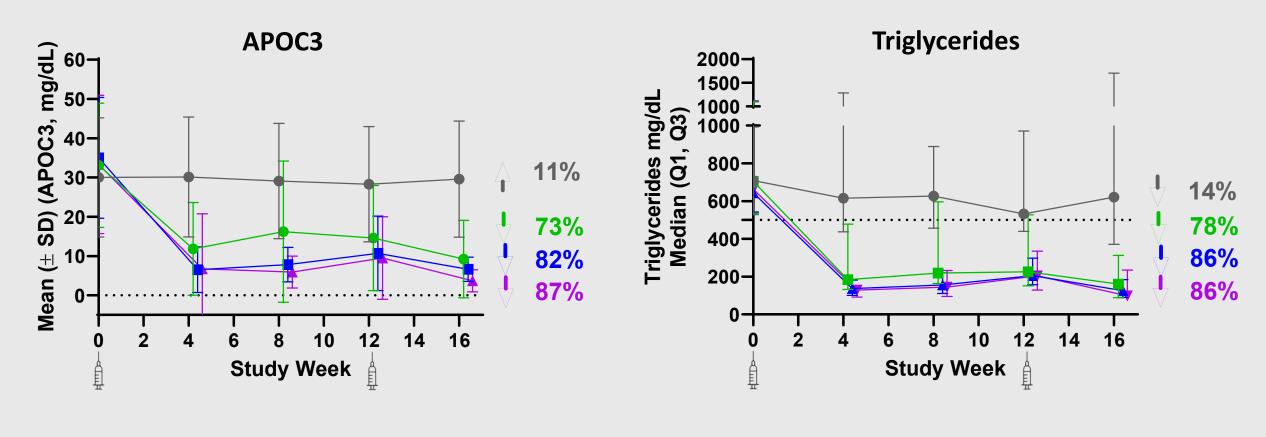
Key Endpoints*: % change from baseline in

- TG
- APOC3
- non-HDL-C
- LDL-C
- HDL-C

Data Analysis: Ongoing Phase 2 study data evaluated when ≥50% of subjects had reached Week 12 and received both doses. 177 subjects had entered the study at the time of the data cutoff (25 Jul 2022). Data available to the Week 16 visit are presented.

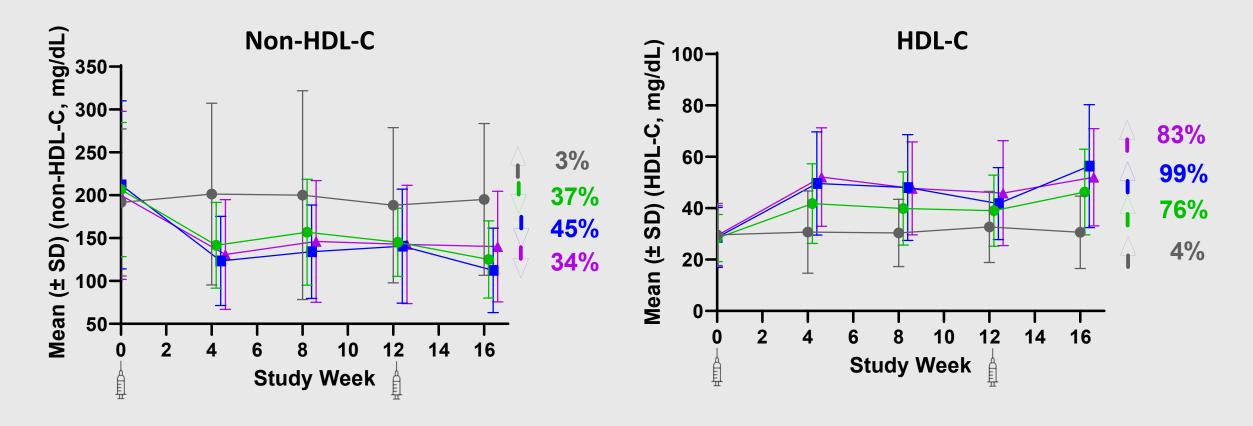
* All samples taken after \geq 10 hour fast

Baseline Characteristics


	Pooled Placebo		ARO-APOC3	
	(N=46)	10 mg (N=43)	25 mg (N=43)	50 mg (N=45)
Mean (SD) age, years	56.3 (11.17)	53.9 (9.29)	56.0 (11.70)	54.8 (10.52)
Female, n (%)	11 (24)	4 (9)	12 (28)	13 (29)
White, n (%)	42 (91)	37 (86)	37 (86)	41 (91)
Mean (SD) BMI, kg/m ²	30.4 (3.8)	32.9 (5.1)	31.4 (5.0)	31.3 (5.3)
Mean (SD) APOC3 μg/L	31.3 (17.4)	33.1 (15.8)	35.0 (15.4)	32.6 (17.5)
Median (Q1, Q3) TG, mg/dL	708.5 (528.5 <i>,</i> 993.0)	704.4 (535.8, 1097.7)	643.9 (542.7, 1099.2)	663.1 (527.4, 1134.9)
Mean (SD) LDL-C (ultracentrifugation), mg/dL	68.7 (43.0)	75.5 (42.9)	73.81 (42.0)	70.1 (45.6)
Mean (SD) non-HDL-C, mg/dL	191.7 (85.8)	206.6 (78.4)	212.1 (98.1)	199.9 (88.1)
Mean (SD) HDL-C, mg/dL	29.6 (12.3)	28.4 (9.2)	28.6 (11.8)	29.4 (11.7)
Mean (SD) remnant cholesterol,* mg/dL	124.7 (90.5)	130.4 (88.3)	138.3 (103.9)	130.3 (93.7)

26

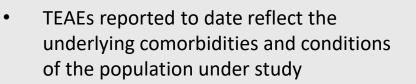
ARO-APOC3 Demonstrates Durable Decreases in Serum APOC3 and Triglycerides at All Doses Studied



- Placebo - 10 mg ARO-APOC3 - 25 mg ARO-APOC3 - 50 mg ARO-APOC3

ARO-APOC3 Decreases Serum Non-HDL-C and Increases HDL-C at All Doses Studied

- Placebo - 10 mg ARO-APOC3 - 25 mg ARO-APOC3 - 50 mg ARO-APOC3


	Pooled Placebo		ARO-APOC3		
		10 mg	25 mg	50 mg	
LDL-C (Ultracentrifugation) (mg/dL)*					
Baseline median (Q1,Q3)	54.0 (31.0, 88.0)	62.0 (29.0, 100.0)	62.5 (44.0, 92.0)	60.0 (30.0, 106.0)	
Median (Q1,Q3) at Week 16	72.5 (18.0, 90.0)	69.0 (38.0 <i>,</i> 120.0)	64.5 (50.0, 126.0)	83.0 (63.0, 122.0)	
Median % change at Week 16 (Q1, Q3)	-6.6 (-32.8, 34.3)	22.2 (-20.8, 86.8)	13.3 (-15.2, 72.4)	11.6 (0.0, 135.5)	
Ν	(n=26)	(n=23)	(n=26)	(n=21)	
Non-HDL Cholesterol(mg/dL)					
Baseline mean (SD)	198.8 (98.1)	213.2 (89.3)	224.6 (111.6)	225.1 (104.0)	
Mean (SD) at Week 16	195.0 (88.6)	125.0 (45.1)	112.3 (49.3)	140.1 (64.5)	
Mean % change at Week 16 (SD)	2.8 (34.8)	-36.5 (26.8)	- 45.0 (21.4)	-33.5 (25.9)	
Ν	(n=28)	(n=24)	(n=27)	(n=23)	

*Median percent change reported due to non-normal distribution

Aggregated Summary of Adverse Events

# of Subjects Reporting ≥ 1 Treatment Emergent Adverse Event (TEAE) N (%)	77/177(44%)
TEAEs occurring in \geq 4 subjects	N (%)
COVID-19 Headache Urinary tract infection Diarrhea Hypertension Glycosylated hemoglobin increased Abdominal pain upper Non-Cardiac chest pain Type 2 diabetes mellitus	17 (10%) 12 (7%) 7 (4%) 5 (3%) 5 (3%) 5 (3%) 4 (2%) 4 (2%) 4 (2%)
Treatment-related TEAEs	16 (9%)
Serious TEAEs	10 (6%)
TEAEs leading to drug discontinuation, dose interruptions, or study withdrawal	0 (0%)
TEAEs causing deaths	0 (0%)

- All TEAEs were pooled regardless of treatment assignment
- Mean change from baseline in HbA1c at Week 16 across cohorts was 0.24% to 0.43% in subjects receiving ARO-APOC3, and 0.11% in subjects receiving placebo, driven by patients with baseline diabetes
- To date, 2 cases of pancreatitis have been reported (blinded)

Interim Analysis of SHASTA-2 Study Suggests Favorable Changes in Triglycerides and Non-HDL Cholesterol in Subjects With SHTG

- Analysis was performed in SHASTA-2 once 50% of subjects reached their Week 12 visit
- Interim results to date demonstrate that ARO-APOC3 durably decreases serum APOC3, TGs, and non-HDL-C while increasing HDL-C at all dose levels:
 - APOC3 up to -87% at Week 16

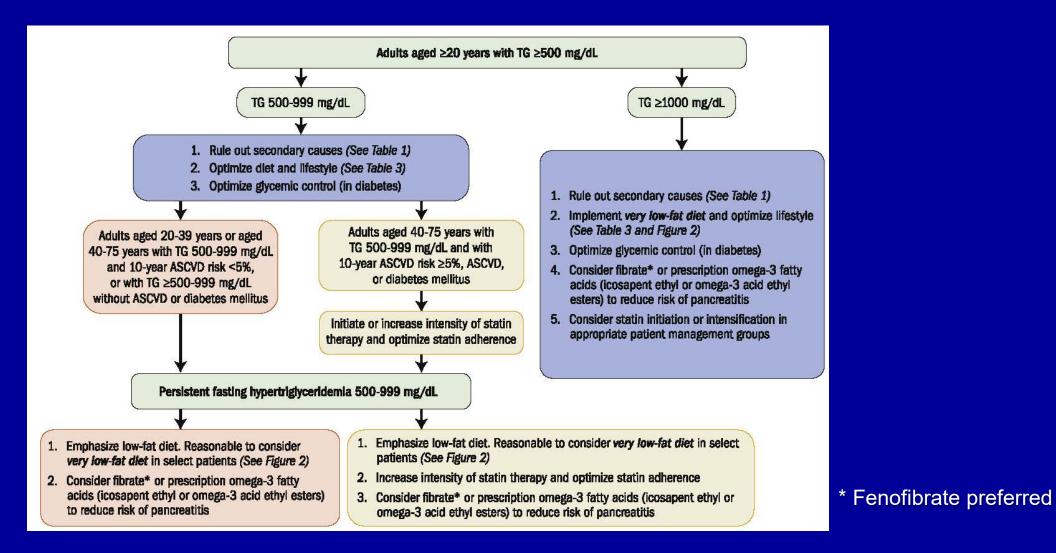
- Non-HDL-C up to -45% at Week 16
- Triglycerides up to -86% at Week 16 HDL-C up to +99% at Week 16
- ARO-APOC3 has been well tolerated in this ongoing Phase 2 study
- Based on these results, RNAi-mediated silencing of hepatic APOC3 expression via ARO-APOC3 appears to be a promising treatment for patients with SHTG

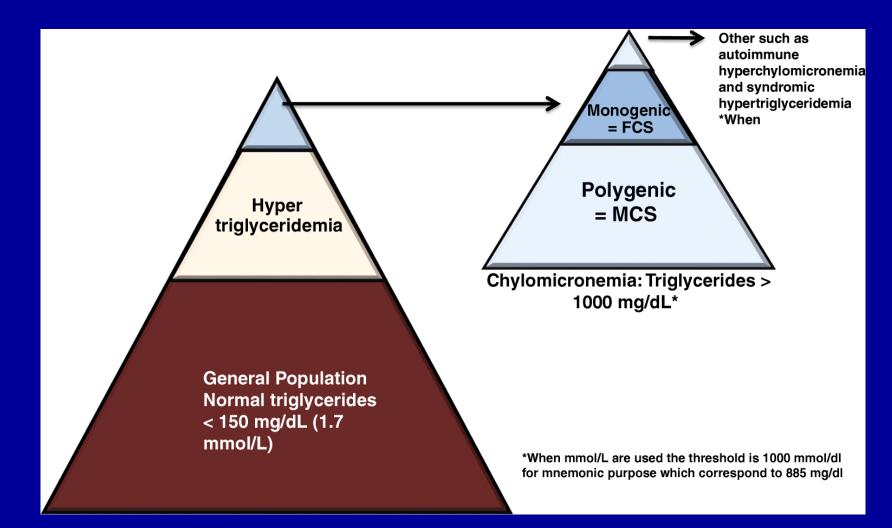
FCS, SHTG, and Pancreatitis

Christie Ballantyne, MD Center for Cardiometabolic Disease Prevention Baylor College of Medicine, Houston, Texas

Cardiometabolic Virtual Investor Event November 9, 2022

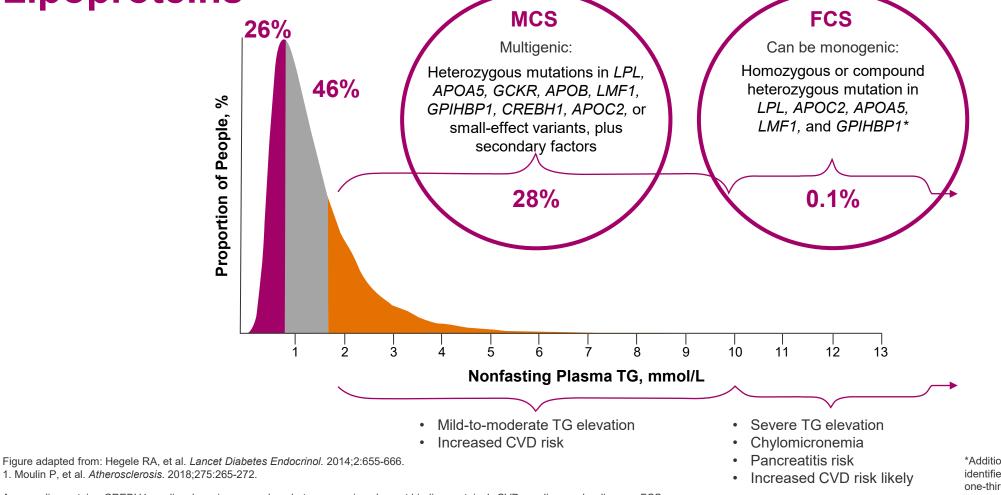
Severe hypertriglyceridemia and apoCIII


Christie M. Ballantyne, MD Center for Cardiometabolic Disease Prevention Baylor College of Medicine Houston, Texas


Christie M. Ballantyne, MD Financial Disclosure

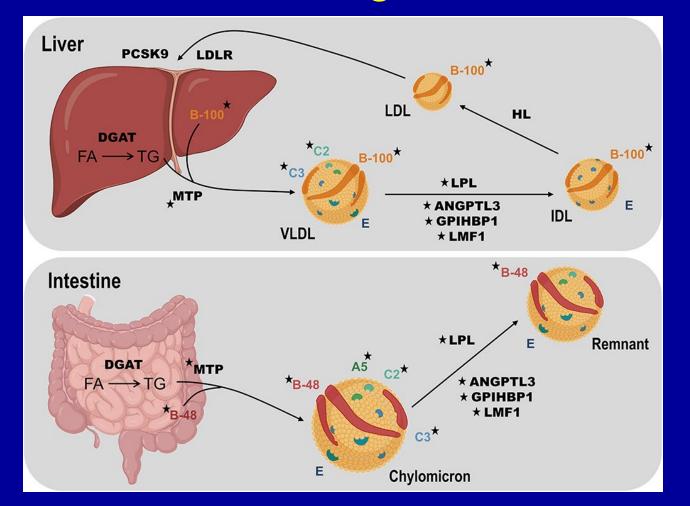
- Grant/Research Support: Abbott Diagnostic, Akcea, Amgen, Arrowhead, Esperion, Ionis, Merck, New Amsterdam, Novartis, Novo Nordisk, Regeneron, Roche Diagnostic, NIH, AHA, ADA (all paid to institution, not individual)
- Consultant: 89Bio, Abbott Diagnostics, Alnylam Pharmaceuticals, Althera, Amarin, Amgen, Arrowhead, Astra Zeneca, Denka Seiken, Esperion, Genentech, Gilead, Illumina, Ionis, Matinas BioPharma Inc, Merck, New Amsterdam, Novartis, Novo Nordisk, Pfizer, Regeneron, Roche Diagnostic

Severe Hypertriglyceridemia (TGs ≥500 mg/dL)

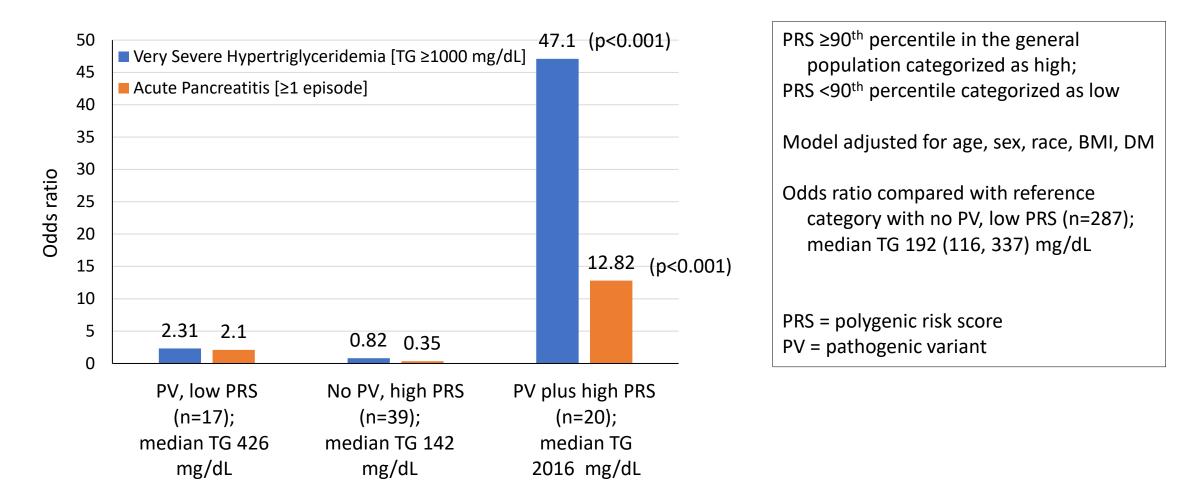


FCS and MCS (multi factorial chylomicronemia) among the spectrum of primary hypertriglyceridemia

Gallo A et al. Curr Atheroscler Rep 2020;22:63.


Genetic Factors Contribute to Elevated Levels of TG-Rich Lipoproteins

*Additional genes are likely to be identified in future, since in more than one-third of patients with a phenotype similar to FCS, no deleterious mutations in these genes can be identified.¹


Apo, apolipoprotein; CREBH1, cyclic adenosine monophosphate responsive element binding protein 1; CVD, cardiovascular disease; FCS, familial chylomicronemia syndrome; GCKR, glucokinase regulator; GPIHBP1, glycosylphosphatidylinositol-anchored high-density lipoprotein– binding protein 1; LMF1, lipase mutation factor 1; LPL, lipoprotein lipase; MCS, multifactorial chylomicronemia syndrome; TG, triglyceride.

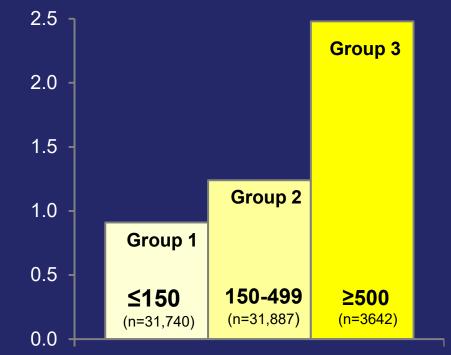
Overview of TG metabolism focusing on human disease genes

Dron JS, Hegele RA. Front Endocrinol (Lausanne) 2020;11:455.

Risk for severe HTG and acute pancreatitis in patients with heterozygous pathogenic variant, high polygenic risk score, or both compared with patients with neither genetic risk factor

Differentiating sHTG Subtypes¹⁻⁴

	Familial Chylomicronemia Syndrome	Multifactorial Chylomicronemia
Population frequency	1–10:1,000,000	1:600 to 1:250
TG, mg/dL (mmol/L)	≥885 (≥10)	≥885 (≥10)
Primarily disturbed lipoprotein fractions	Elevations of chylomicrons	Elevations of chylomicrons and remnants Elevations of VLDL and IDL
Genetic basis	Monogenic	Polygenic
Relevant genetic determinants	Causative bi-allelic rare variants in canonical TG metabolism genes	Susceptibility may be conferred by heterozygous rare variants in genes canonically or peripherally involved in TG metabolism and/or the accumulation of common, small-effect TG-raising SNPs
Role of environmental (nongenetic) factors	May modulate severity but not expression of phenotype	Combination of genetic and environmental factors modulate expression and severity of phenotype
Time of presentation	Often presents in childhood with clinical manifestations of nausea, vomiting, failure to thrive, and abdominal pain	Presents in adulthood with clinical manifestations such as lipemia retinalis, hepatosplenomegaly, eruptive xanthomas, nausea, vomiting, and abdominal pain
Risk of ASCVD // Acute pancreatitis	Lower than MCS // 60%–88%	Moderate to high // 11%–37%

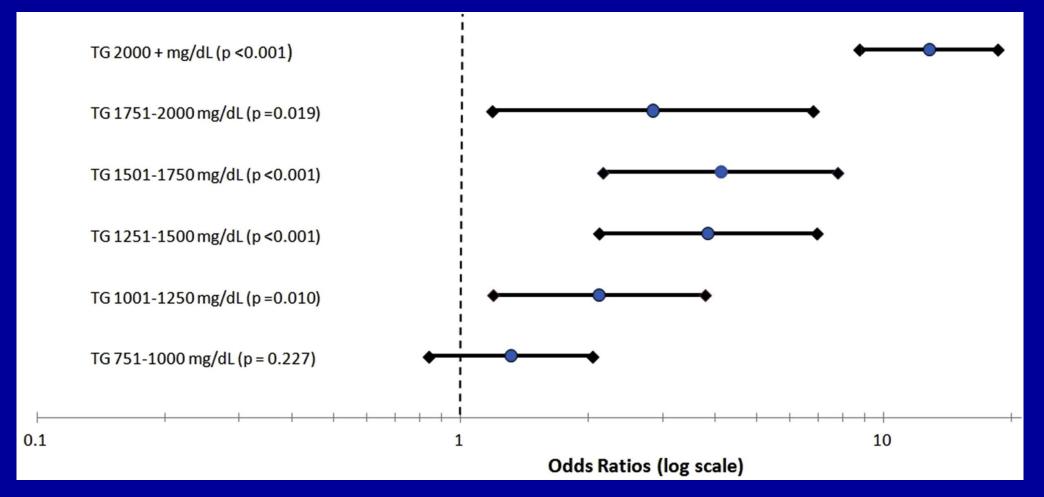

ASCVD, atherosclerotic cardiovascular disease; IDL, intermediate-density lipoprotein; MCS, multifactorial chylomicronemia syndrome; sHTG, severe hypertriglyceridemia; SNP, single-nucleotide polymorphism; TG, triglyceride; VLDL, very-low-density lipoprotein.

1. Gill PK, et al. Curr Opin Cardiol. 2021;36:264-271. 2. Chait A, Eckel RH. Ann Intern Med. 2019;170:626-634. 3. Paquette M, Bernard S. Front Cardiovasc Med. 2022;9:886266. 4. Baass A, et al. J Intern Med. 2020;287:340-348.

Increasing TG Levels Increase Risk of Pancreatitis

- Dose-response of TG vs pancreatitis (adjusted HR, 1.04 [95% CI, 1.02-1.05])
- Pancreatitis increases 4% for every 100 mg/dL increase in TG above 500 mg/dL*

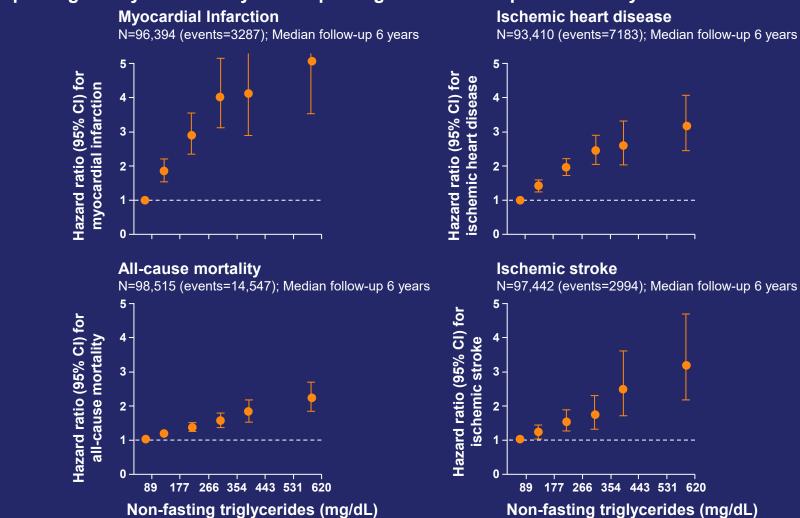
Crude Incidence (cases/1000 pt-yr)



Triglycerides (mg/dL)

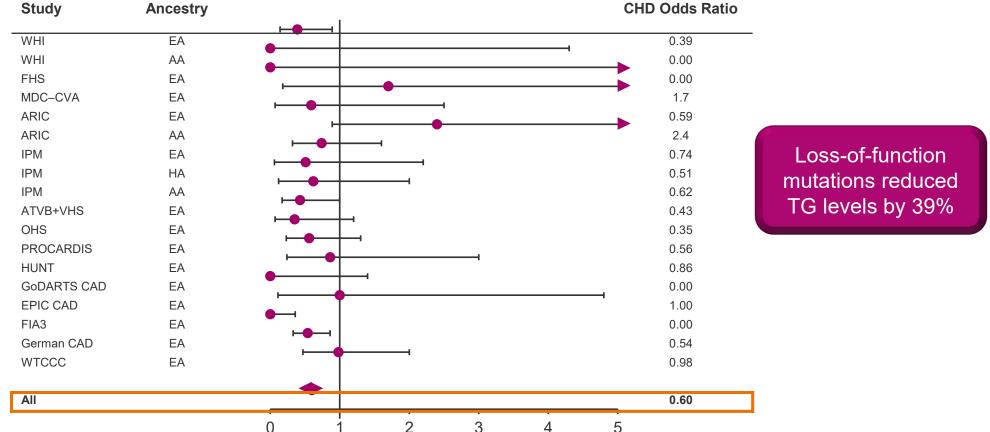
*After adjustment for covariates and removal of patients hospitalized for gallstones, chronic pancreatitis, alcohol-related morbidities, renal failure, and other biliary disease

Murphy MJ et al. JAMA Intern Med. 2013;173:162-4.

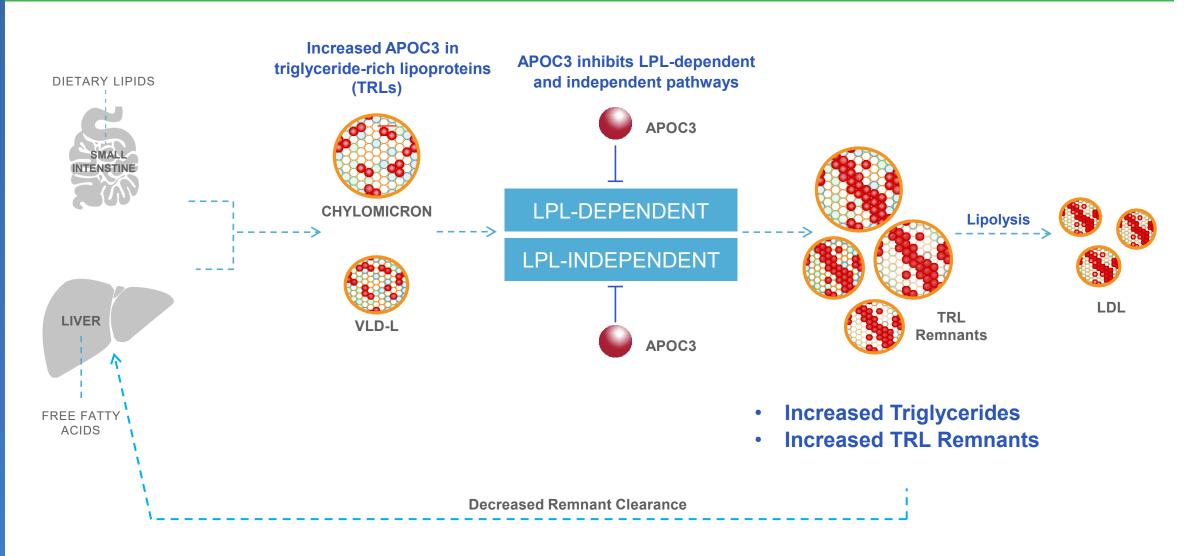

Association between baseline TG level and risk of acute pancreatitis over 12-month follow-up in 26,896 US adults with TG >500 mg/dL

Toth PP et al. Atherosclerosis 2014;237:790-797.

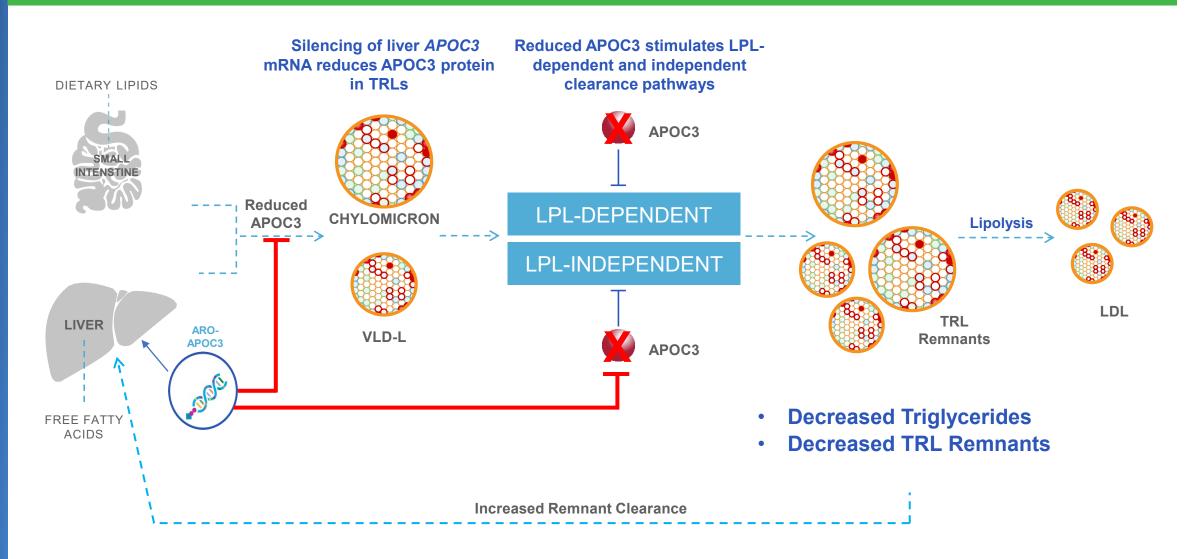
Increasing TG Levels Increases CVD and All-cause Mortality


Copenhagen City Heart Study and Copenhagen General Population Study

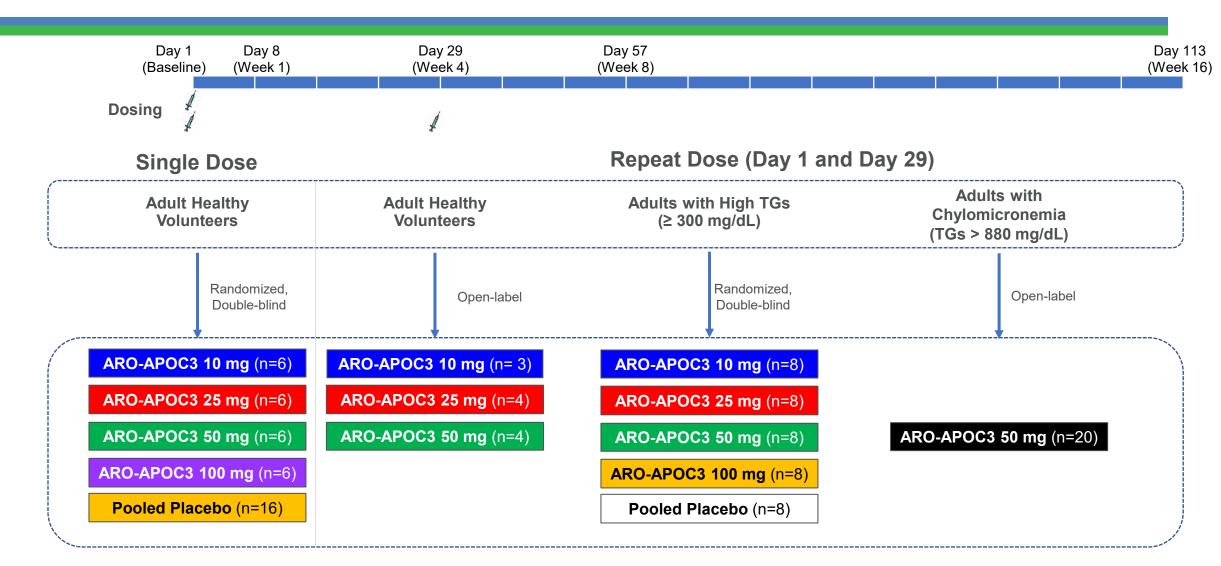
Hazard ratios were estimated by Cox proportional hazard regression models, and were adjusted for age, sex, and trial group.Nordestgaard BG et al. Lancet. 2014;384:626-35.Cardiometabolic Virtual Investor Event November 9, 2022

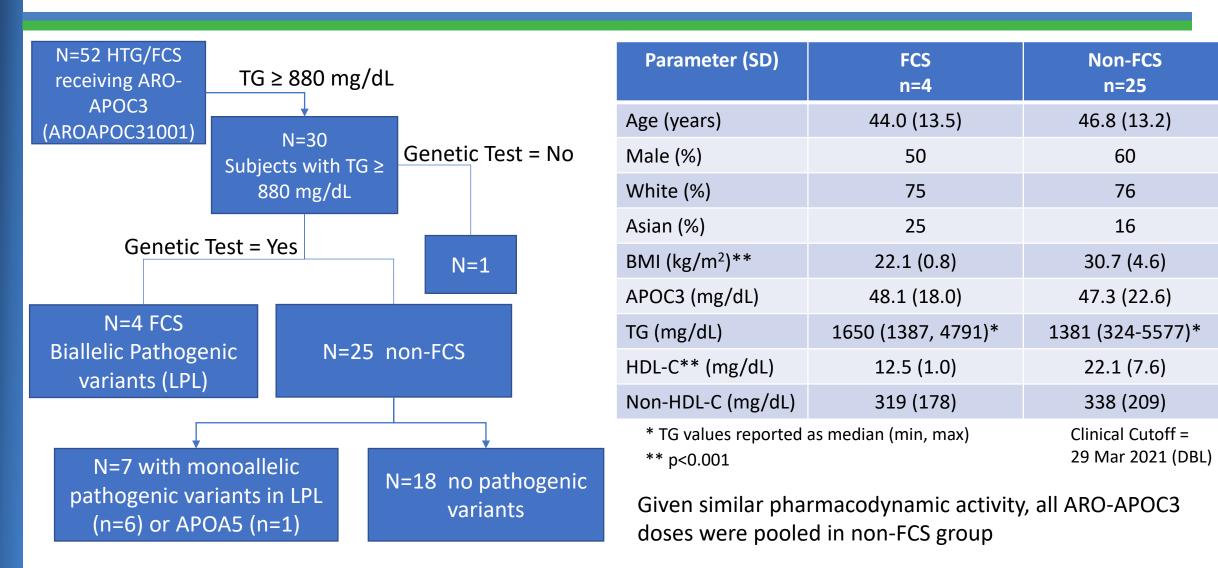

Loss of function of apoC-III is cardioprotective

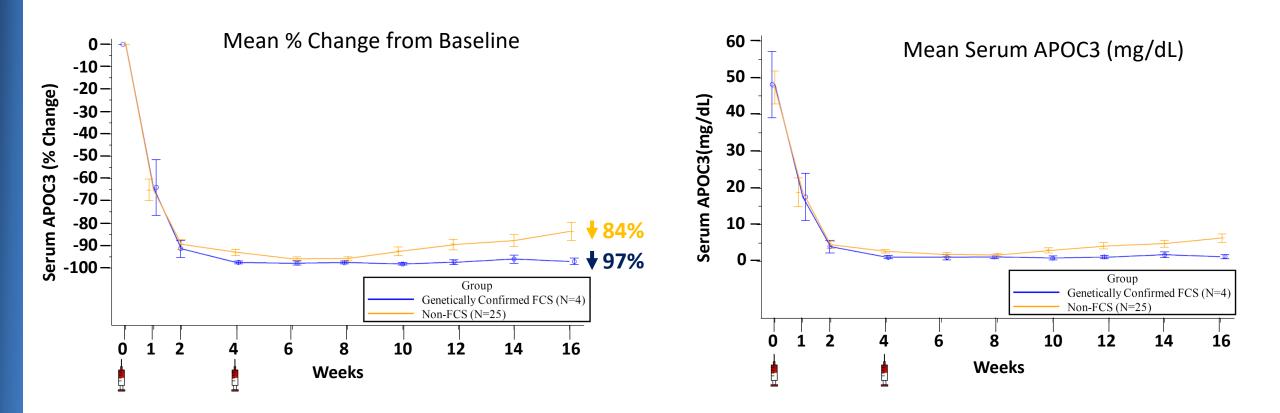
Odds Ratio for CHD of Subjects With Any of 4 ApoC-III Loss-of-Function Mutations Among 110,970 Participants (34,002 patients with CHD; 76,968 controls) in 14 Studies

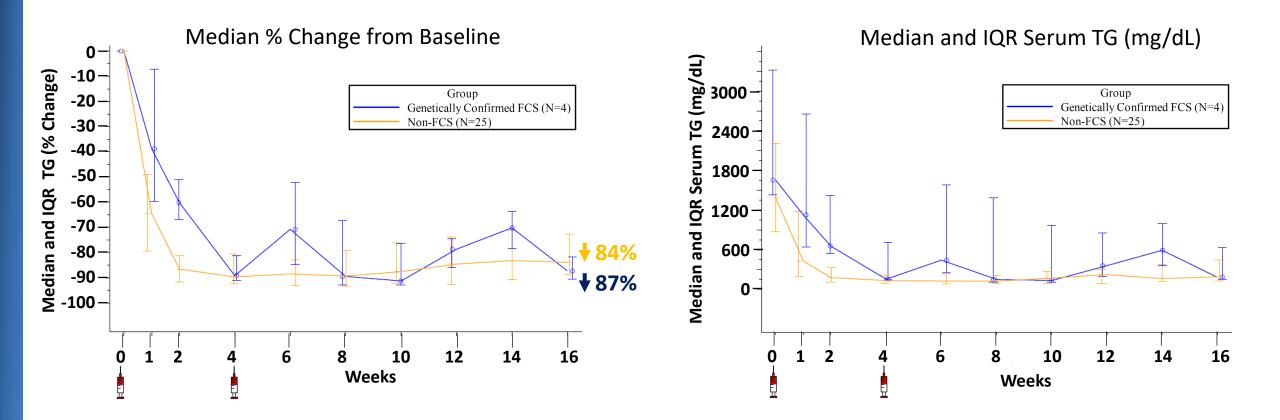


ApoC-III, apolipoprotein C-III; CHD, coronary heart disease; TG, triglyceride.


Full study names: ARIC, Atherosclerosis Risk in Communities; ATVB, Italian Atherosclerosis, Thrombosis, and Vascular Biology Study; EPIC, European Prospective Study Into Cancer and Nutrition; FHS, Framingham Heart Study; FIA3, First Myocardial Infarction in AC County 3; GoDARTS, Genetics of Diabetes Audit and Research Tayside Study; HUNT, Nord–Trøndelag Health Study; IPM, Mt. Sinai Institute for Personalized Medicine Biobank; MDC–CVA, Malmö Diet and Cancer Study Cardiovascular Cohort; OHS, Ottawa Heart Study; PROCARDIS, Precocious Coronary Artery Disease Study; VHS, Verona Heart Study; WHI, Women's Health Initiative; WTCCC, Wellcome Trust Case Control Consortium. The TG and HDL Working Group of the Exome Sequencing Project, NHLBI. *N Engl J Med.* 2014;371:22-31. APOC3 Is a Key Regulator of Triglycerides and TRLs Through Inhibition of Lipoprotein Lipase-Dependent and Independent Pathways


Increased APOC3 Levels Result in Inhibition of Lipoprotein Lipase-Dependent and Independent Pathways Leading to Increased Triglycerides and TRL Remnants


AROAPOC31001 First-in-Human Study Design


Participant Disposition and Baseline Characteristics

ARO-APOC3 results in similar, sustained reduction in baseline serum APOC3 in FCS and non-FCS participants

ARO-APOC3 results in similar sustained reduction of triglycerides in FCS and non-FCS participants

Summary

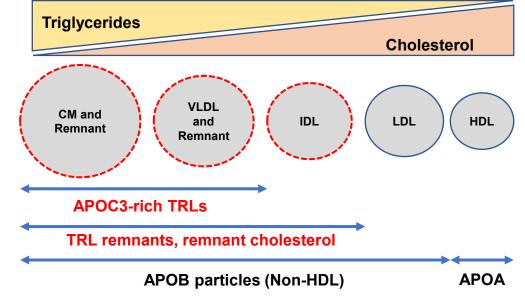
- In patients with FCS compared with non-FCS, ARO-APOC3 SC achieves similar levels
 of reduction of APOC3 and changes in key lipid parameters
- In patients with FCS compared with non-FCS, safety parameters were similar and comparable
- In patients with severe HTG (TG>880 mg/dL), ARO-APOC3 was well tolerated, and consistently decreased APOC3, TG, and non-HDL-C, and increased HDL-C, independent of underlying genetic cause of HTG.
- ARO-APOC3 may represent a promising RNAi therapeutic for the treatment of severe HTG with infrequent dosing (Q3M or greater)

Cardiometabolic/ Lipid Treatment Landscape and Residual Risk

Robert Rosenson, MD

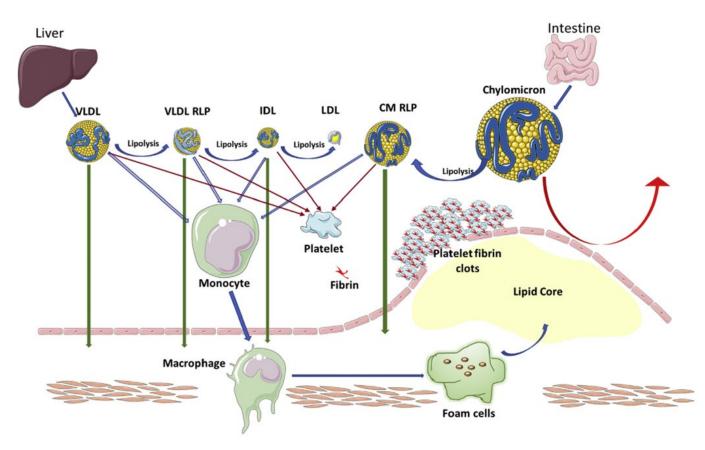
Director, Metabolism and Lipids Unit, Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai Icahn School of Medicine, New York, New York, USA

Cardiometabolic Virtual Investor Event November 9, 2022


ASCVD Residual Risk Associated With TRLs

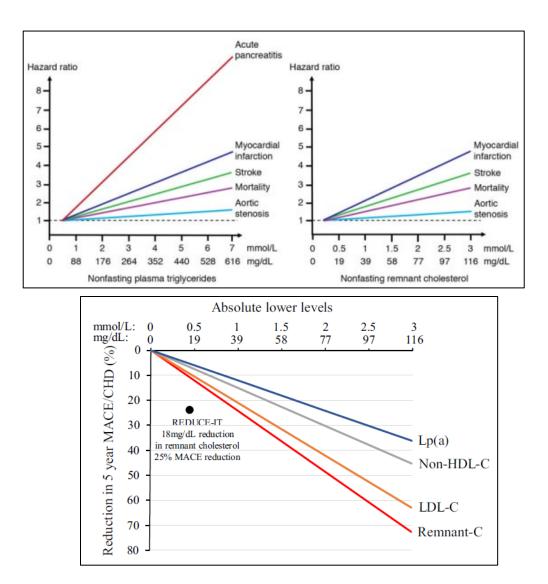
Robert S. Rosenson, M.D.

Director, Metabolism and Lipids Unit, Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai Icahn School of Medicine, New York, New York, USA


Dyslipidemia is a major risk factor for cardiovascular disease

- ASCVD is the leading cause of mortality worldwide ¹
- Low-density lipoprotein cholesterol (LDL-C) is the primary lipid target to prevent ASCVD (e.g., statins and PCSK9 inhibitors) ^{2,3,4,5}
- Approximately 20%-25% of patients with ASCVD may have elevated Triglycerides (TGs) and controlled LDL-C^{6,7}
- Despite adequate LDL-C control, considerable residual cardiovascular risk remains partly due to increases in circulating levels of: ^{8,9,10,11}
 - TG-rich lipoprotein (TRL) remnants and associated cholesterol
 - Discordantly high Apolipoprotein B (ApoB) relative to LDL-C or non-HDL-C
 - Apolipoprotein C3 (APOC3)

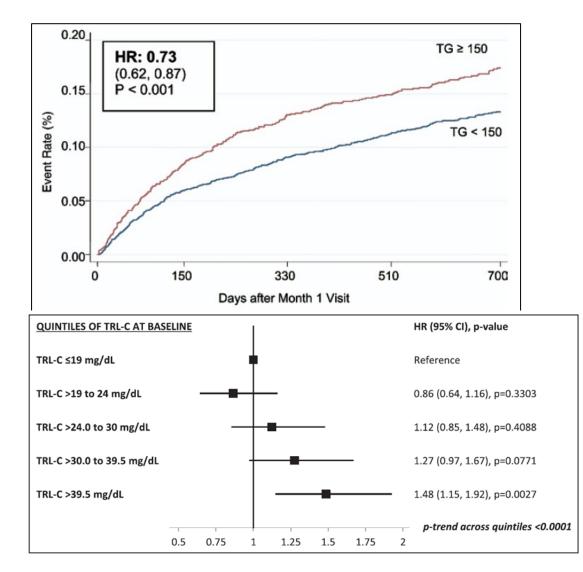
¹World Health Organization <u>Cardiovascular diseases (who.int)</u> Accessed May 2022; ²AHA/ACC. J Am Coll Cardiol 2019;73:e285-350; ³ACC Expert Consensus. JACC 2021;78:960-93; ⁴ESC/EAS. Eur Heart J 2020;41:111-88; ⁵Japan Atherosclerosis Society. J Atheroscler Thromb 2018;25:846-984; ⁶Lawler PR. Eur Heart J 2020;41:86-94; ⁷Fan W. Diabetes Care 2019;42:2307-14 ⁸Jorgensen AB. N Engl J Med 2014;371:32-41; ⁹Parhofer KG. E Heart J Supplements 2020;22:Suppl J:J21-33; ¹⁰Langsted A. J Intern Med 2020;288:116-27; ¹¹Kim CW. Circ J 2021;85:900-907.


TRL Remnants Increase Atherogenicity

- Multiple pathways of TRL atherogenicity:
 - Receptor binding and uptake by macrophages results in Foam Cells in atherosclerotic lesions
 - Activation of inflammation
 - Facilitate thrombosis

Rosenson RS, Shaik A, Song W. New Therapies for Lowering Triglyceride-Rich Lipoproteins: JACC Focus Seminar 3/4. J Am Coll Cardiol. 2021 Nov 2;78(18):1817-1830.

TRLs in ASCVD: Epidemiologic Evidence



 Increased TG and remnant cholesterol are associated with increased risk of ASCVD events¹

 A lower remnant cholesterol of 30mg/dL is associated with a 20% decreased risk of recurrent MACE²

Copenhagen General Population Study and Copenhagen City Heart Study. 1 Parhofer KG. E Heart J Supplements 2020;22 2 Langsted A. J Intern Med 2020;288:116-27

TRLs in ASCVD: Evidence from Clinical Trials

 Lower TGs are associated with reduced risk of CHD in statintreated patients¹

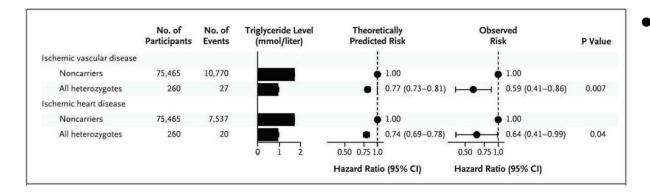
 Higher TRL-C (remnant-C) is associated with higher 5-year MACE rates in statin-treated patients²

1 Prove IT-TIMI 22 Trial. Miller M. JACC 2008;51:724-30 2 TNT Trial. Vallejo-Vaz AJ et al. Circulation 2018;138:770-81

Genetic Evidence for ANGPTL3 as a Target in ASCVD

Study	CAD C Carriers	Cases Total	CAD-Fi Carrier	ree Contro s Total	ols O	dds Ratio	95% Confidence Interval
Biolmage	0	54	2	351 +			→ 1.28 [0.06; 27.08]
UK Biobank_NonEA	0	816	8	21653 +			→ 1.56 [0.09; 27.04]
WTCCC	0 -	1907	1	2912 +		_	→ 0.51 [0.02; 12.50]
REGICOR	2	382	1	402			→ 2.11 [0.19; 23.37]
South German MI	0	400	1	399 +		_	→ 0.33 [0.01; 8.17]
PennCath	1	914	1	449 +			→ 0.49 [0.03; 7.86]
JHS	1	134	11	2042			→ 1.39 [0.18; 10.83]
EOMI_AA	1	173	4	678 -		+	→ 0.98 [0.11; 8.82]
North German MI	4	857	2	871			→ 2.04 [0.37; 11.15]
OHS	0	956	2	966 +		_	- 0.20 [0.01; 4.21]
ARIC_AA	1	392	8	2598 -		-	→ 0.83 [0.10; 6.64]
Duke AA	1	546	3	641 ←			- 0.39 [0.04; 3.76]
PROCARDIS	4	913	3	904			→ 1.32 [0.29; 5.92]
ARIC_EA	0	773	18	6482 +			- 0.23 [0.01; 3.75]
UK Biobank EA	1 4	4429	56	106988 +		<u> </u>	0.43 [0.06; 3.12]
ATVB	6 -	1769	5	1699			- 1.15 [0.35; 3.79]
EOMI EA	3	570	9	1398		_	0.82 [0.22; 3.03]
Leicester	2 -	1220	6	1096 +		<u> </u>	0.30 [0.06; 1.48]
PROMIS	10 4	4775	20	5671		-	0.59 [0.28; 1.27]
Fixed effect model	37 21	1980	161	158200	-	-	0.66 [0.44; 0.98]
				Г		+	
				0.1	0.5	1 2	5

Table 1. Associations between ANGPTL3 Predicted Loss-of-Function Variants and Lipid Levels in DiscovEHR Study Participants.*

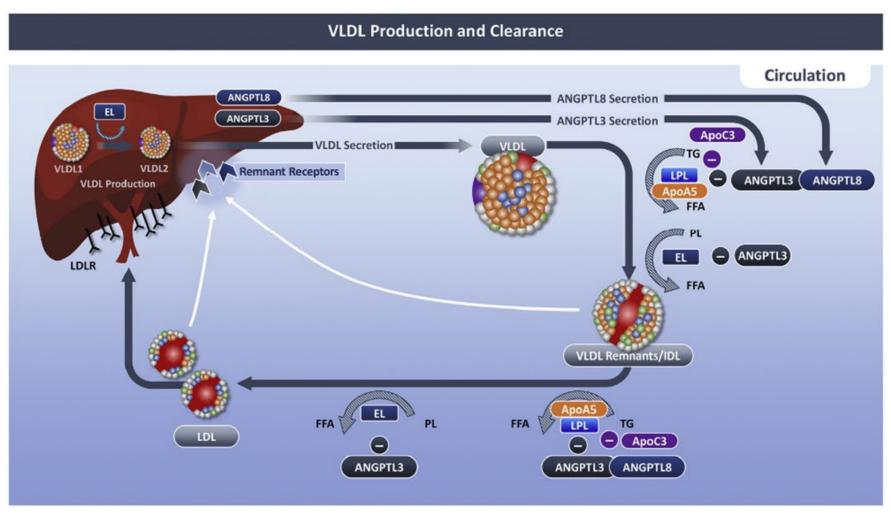

Trait	Ν	Noncarriers		Carriers of ANGPTL3 Loss-of- Function Variants		
	No. of Participants	Median Level (IQR)	No. of Participants	Median Level (IQR)		
		mg/dl		mg/dl		
Triglycerides	45,015	130 (94–179)	191	94 (75–125)	2.5×10 ⁻²¹	
HDL cholesterol	45,036	49 (40–59)	190	46 (38–56)	0.02	
LDL cholesterol	44,629	121 (100–146)	190	112 (90–136)	2.8×10 ⁻⁵	
Total cholesterol	44,877	204 (179–232)	191	179 (160–203)	1.7×10 ⁻¹⁷	

 Heterozygous ANGPTL3 LOF carriers had 17% lower TG levels and a 34% lower odds of coronary artery disease¹

 Heterozygous ANGPTL3 LOF carriers had 27% lower TG levels and a 41% lower odds of coronary artery disease²

1 Stitziel NO. J Am Coll Cardiol 2017;69:2054-2063. 2 DiscovEHR Study. Dewey, FE. N Engl J Med 2017;377:211-21

Genetic Evidence for APOC-III as a Target in ASCVD


Study	Ancestry	Odds Ratio (95% CI)		P Value
WHI	EA		0.39 (0.14-0.89)	0.02
WHI	AA		0.00 (0.00-4.30)	1.00
FHS	EA		 0.00 (0.00–13.00) 	1.00
MDC-CVA	EA		1.70 (0.18-7.10)	0.36
ARIC	EA		0.59 (0.07-2.50)	0.76
ARIC	AA		2.40 (0.89-5.70)	0.05
IPM	EA		0.74 (0.32-1.60)	0.50
IPM	HA		0.51 (0.06-2.20)	0.54
IPM	AA		0.62 (0.12-2.00)	0.61
ATVB+VHS	EA		0.43 (0.17-1.00)	0.04
OHS	EA		0.35 (0.07-1.20)	0.10
PROCARDIS	EA		0.56 (0.23-1.30)	0.17
HUNT	EA		0.86 (0.24-3.00)	1.00
GoDARTS CAD	EA	• · · · · · · · · · · · · · · · · · · ·	0.00 (0.00-1.40)	0.16
EPIC CAD	EA		1.00 (0.11-4.80)	1.00
FIA3	EA		0.00 (0.00-0.36)	0.002
German CAD	EA		0.54 (0.33-0.86)	0.007
WTCCC	EA		0.98 (0.47-2.00)	1.00
All		•	0.60 (0.47-0.75)	<0.001
		0 1 2 3 4	5	

 Heterozygous carriers of APOC-III LOF carriers had 44% lower TG levels and 41% lower risk of ischemic vascular disease¹

 Heterozygous APOC-III LOF carriers had 39% lower TG levels and a 40% lower odds of coronary heart disease²

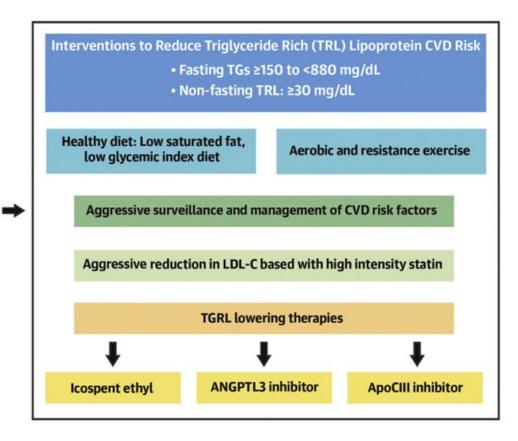
1 Jorgensen AB et al. NEJM 2014;371(1):32-41 2 TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute. N Engl J Med. 2014;371:22-31

ANGPTL3 and ApoC-III are Important Regulators of VLDL Production and Clearance

Rosenson RS, Shaik A, Song W. New Therapies for Lowering Triglyceride-Rich Lipoproteins: JACC Focus Seminar 3/4. J Am Coll Cardiol. 2021 Nov 2;78(18):1817-1830.

Clinical Algorithm for Treatment of High TRL

Risk Assessment


- Cardiovascular history of clinical events and subclinical disease
- Assessment and evaluation of cardiovascular risk factors
- Family history
 - First-degree and multigenerational family trees including CVD history, age of onset of first and recurrent events, untreated lipid and lipoprotein levels, genetic analysis

Laboratory Assessment

- Lipid panel (total cholesterol, LDL cholesterol, HDL cholesterol, non-HDL cholesterol, triglycerides)
- Apolipoprotein B or LDL particle number
- TGRL/Remnant cholesterol (non-fasting)
- Screen for secondary causes of dyslipidemia
 - Obesity, poor diet, diabetes, hypothyroidism, renal disease, liver disease, autoimmune disease

Genetic Assessment

- Major genes in TRL metabolism (APOC3, ANGPTL3 variants)
- Polygenic risk

Rosenson RS, Shaik A, Song W. New Therapies for Lowering Triglyceride-Rich Lipoproteins: JACC Focus Seminar 3/4. J Am Coll Cardiol. 2021 Nov 2;78(18):1817-1830.

Summary

- Emerging evidence suggests that elevated TRLs contribute to the risk of atherosclerotic cardiovascular events.
- LOF mutations in ANGPTL3 and APOC-III are associated with lower TRLs and lower risk of ASCVD.
- Clinical trials are warranted to establish the efficacy of inhibiting ANGPTL3 and APOC-III.

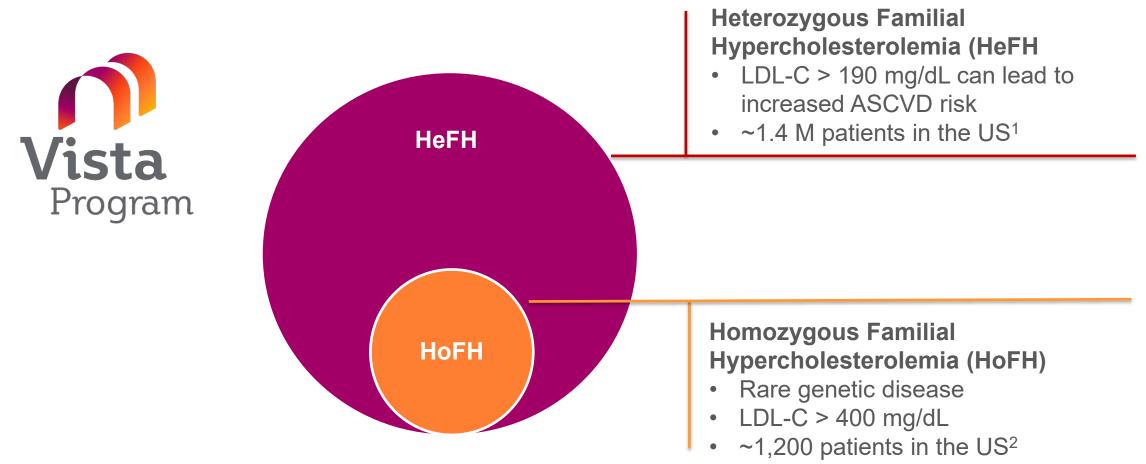
Arrowhead Cardiometabolic Pipeline: Journey From Early Development to Registration Path

Javier San Martin, MD Chief Medical Officer, Arrowhead Pharmaceuticals

Cardiometabolic Virtual Investor Event November 9, 2022

Status of Cardiometabolic Programs

- Robust Clinical & Regulatory Milestones in 2023
 - Three Phase 2 study completion and dose selection
 - One Phase 3 study fully enrolled
 - Three end-of-Phase 2 regulatory meetings
- Interim Analyses of Phase 2 Studies Required to Make Informed Decisions on:
 - Pivotal Phase 3 studies
 - patient populations,
 - indications,
 - study designs, and
 - study execution
 - Registrational path


ANGPTL3: Key Regulator of Lipid and Lipoprotein Metabolism

- ANGPTL3 is a key regulator of lipid and lipoprotein metabolism that inhibits Lipoprotein Lipase (LPL) and Endothelial Lipase (EL)
- ARO-ANG3 has a unique mechanism of action to address hypercholesterolemia distinct from other LDL-C-lowering therapies

- May address unmet need in patients with specific genetic mutations (eg, patients with dysfunctional LDL receptor [LDLR], HoFH and HeFH)
- May be added to other LDL-C-lowering therapies in patients not at goal

ARO-ANG3 Development Will Follow Biology With More Targeted Therapy for At-Risk Population

¹ Akioyamen LE et al. 2017 BMJ Open. 2017 Sep 1;7(9):e016461.
 ² Company estimate based on Cuchel M et al. 2014 Eur Heart J. 35:2146-2157

ARO-ANG3 Lowers Lipid Parameters Across Broad Range of Patients with Hypercholesterolemia

	Phase 1 Healthy Volunteers Repeat Dose (Day 1, 29)	Phase 1 HeFH Repeat Dose (Day 1, 29)	Phase 2 Mixed Dyslipidemia (Day 1, Week 12)		
	Pooled ARO-ANG3 (100,	Pooled ARO-ANG3 (100,	ARO-ANG3 50	ARO-ANG3 100	ARO-ANG3 200
	200, 300 mg)	200, 300 mg)	mg	mg	mg
	(N=12)	(N=17)	(N=51)	(N=50)	(N=51)
Baseline mean (SD) LDL-C, mg/dL	131.1 (32.1)	134.1 (32.6)	112.8 (29.7)	108.7 (44.8)	105.6 (33.7)
Mean % Δ (SD) at Wk 16	-39.8%	-24.4%	-23.2%	-22.1%	-31.7%
	(11.5%)	(21.3%)	(24.4%)	(24.3%)	(23.3%)
Baseline mean (SD) Non-HDL-C , mg/dL	170.5 (37.0)	167.4 (42.0)	151.5 (36.0)	149.3 (47.5)	143.3 (39.6)
Mean % Δ (SD) at Wk 16	- 44.5%	-26.9%	-28.0%	- 30.8%	-36.3%
	(9.0%)	(18.0%)	(19.9%)	(17.0%)	(17.8%)
Baseline mean (SD) ApoB , mg/dL	101.0 (23.0)	113.6 (35.9)	106.8 (23.4)	99.6 (26.2)	94.9 (25.0)
Mean % Δ (SD) at Wk 16	- 32.7%	- 14.0%	-18.8%	-13.2%	-21.8%
	(9.5%)	(16.2%)	(16.3%)	(17.5%)	(21.3%)
Baseline median TGs , mg/dL*	137.0	94.0	223.3	231.2	234.1
	(57, 324)	(38, 441)	(174, 303)	(191, 265)	(184, 326)
Median % Δ at Wk 16	-68.1%	-32.5%	-52.9%	-56.4%	-59.1%

on arrowhead

* Min, Max for Phase Study and Q1, Q3 for Phase 2 study

ARO-ANG3 Established Impact on Dyslipidemia

- Treatment with ARO-ANG3 results in reductions from baseline of:
 - ~20-40% in LDL-C*
 - ~30-45% in Non-HDL-C*
 - ~15-30% in ApoB*
 - ~40-65% in Triglycerides*
 - ~30% relative reduction in liver fat (MRI-PDFF) (at week 24)
- Favorable effects across various lipid parameters may translate into positive changes for patients with familial hypercholesterolemia and/or metabolic syndrome
- ARO-ANG3 Q3M SQ dosing may improve adherence

ARO-ANG3 Planned Clinical Development and Registration Path

Data Readout			H2 2022	H1 2023
ARO-ANG3-2001	Phase 2	Mixed Dyslipidemia	\checkmark	
ARO-ANG3-2003	Phase 2	HoFH		\checkmark

Regulatory Interactio	H1 2023	H2 2023		
ARO-ANG3-2001	EoP2	Mixed Dyslipidemia	\checkmark	
ARO-ANG3-2003	EoP2	Hofh	\checkmark	

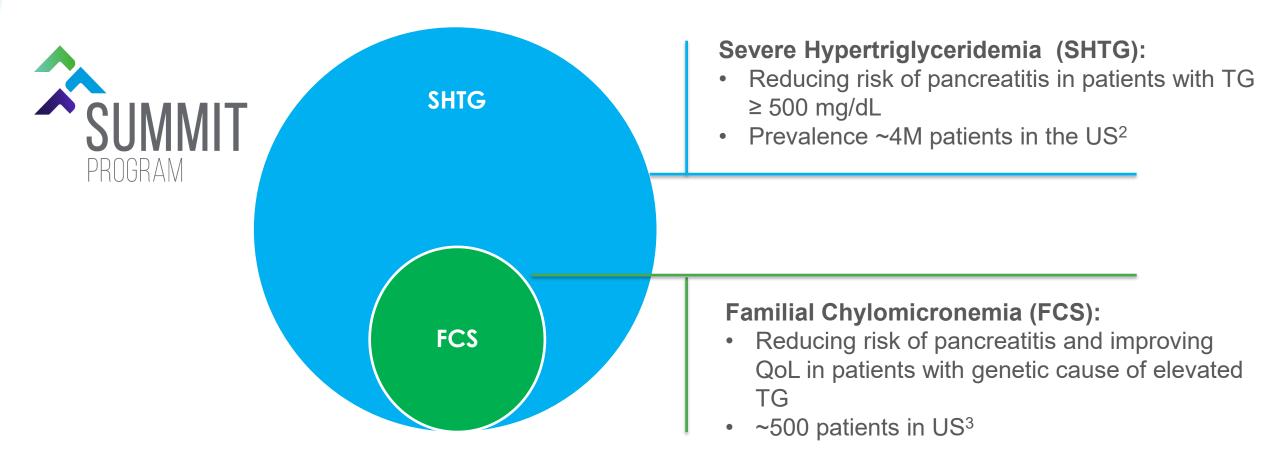
Pivo	tal Study Initiation			H1 2023	H2 2023
AR	RO-ANG3-3001	Phase 3	HeFH		\checkmark
AF	RO-ANG3-3002	Phase 3	Hofh		\checkmark

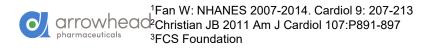
ARO-APOC3 Addresses:

Risk of Pancreatitis in Severe Hypertriglyceridemia Syndromes

and

Residual Risk in ASCVD in Mixed Dyslipidemia


Cardiometabolic Virtual Investor Event November 9, 2022


APOC3: Key Regulator of Lipid and Lipoprotein Metabolism

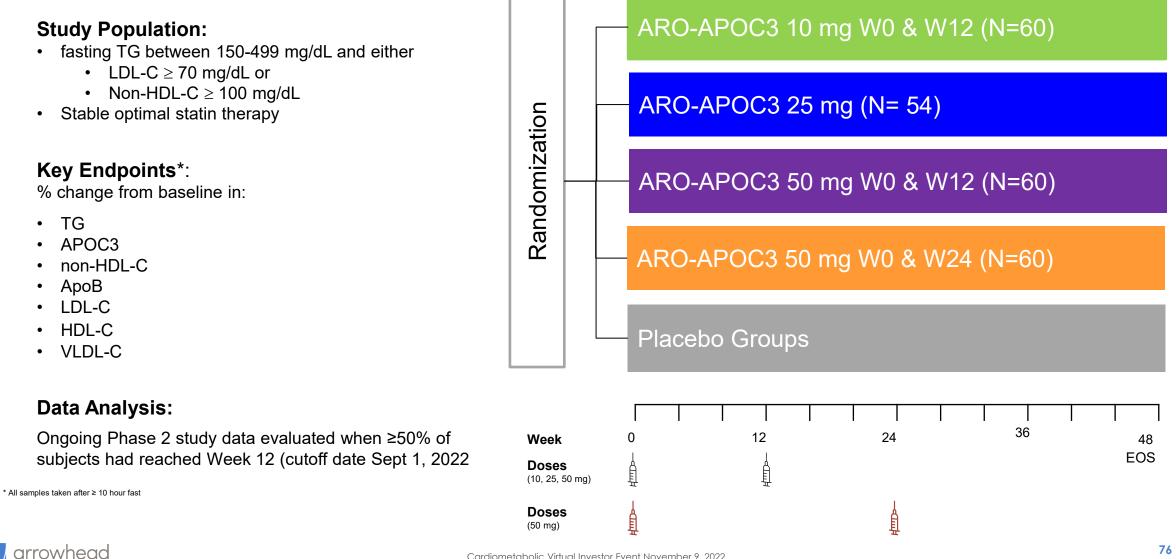
- APOC3 is a key regulator of lipid and lipoprotein metabolism that inhibits Lipoprotein Lipase (LPL) and mediates hepatic uptake of remnant particles in an LPL-independent pathway
- ARO-APOC3 improves multiple lipid parameters and may provide clinical benefit in a broad population with dyslipidemias
 - Reduction in TG in patients with SHTG, including FCS, to decrease the risk of acute pancreatitis
 - Reduction in residual cardiovascular risk factors (APOC3, LDL-C, ApoB, remnant cholesterol) in patients at risk of ASCVD

ARO-APOC3 Will Address Unmet Need in Patients With Severely Elevated Triglycerides at Risk for Pancreatitis

ARO-APOC3 Addresses Severe Hypertriglyceridemia Regardless of Severity and Genetic Background

	Phase 2 SHTG (Day 1, Week 12)				Phase 1 Chylomicronemia Syndrome (MCS) or FCS Repeat Dose (Day 1, 29)	
	ARO-APO3 10 mg (N=24)	ARO-APO3 25 mg (N=27)	ARO-APO3 50 mg (N=23)	MCS ARO-APOC3 50 mg (N=20)	FCS ARO-APOC3 50 mg (N=4)	
Baseline median TGs , mg/dL*	704.4	643.9	663.1	1715.0	1650	
	(536, 1098)	(543, 1099)	(527, 1135)	(344, 5577)	(1387, 4791)	
Median % Δ at Wk 16	-77.8%	-86.1%	-85.6%	-85.5%	-87.3%	
Baseline mean (SD) Non-HDL-C ,	206.6	212.1	199.9	337.6 (218.7)	319.0	
mg/dL	(78.4)	(98.1)	(88.1)		(178.0)	
Mean % Δ (SD) at Wk 16	-36.5%	-45.0%	-33.5%	-47.2%	-53.7%	
	(26.8%)	(21.4%)	(25.9%)	(25.2%)	(28.9%)	
Baseline mean (SD) HDL-C , mg/dL	28.4 (9.2)	28.6 (11.8)	29.4 (11.7)	17.6 (7.0)	12.5 (1.0)	
Mean % Δ (SD) at Wk 16	75.8%	99.2%	83.0%	102.9%	130.1%	
	(50.1%)	(65.5%)	(55.2%)	(56.3%)	(59.7%)	

ARO-APOC3 Clinical Development for SHTG and FCS and Registration Path

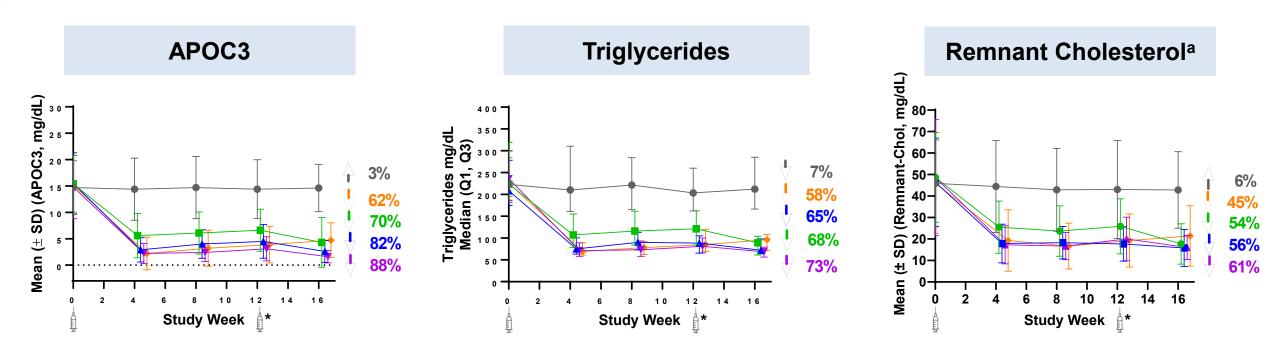

Data Readout			H1 2023	H2 2023	H1 2024
AROAPOC3-2001	Phase 2	SHTG		\checkmark	
AROAPOC3-3001	Phase 3	FCS			\checkmark
Regulatory Interaction	าร		H1 2023	H2 2023	H1 2024
AROPOC3-2001	EoP2	SHTG			\checkmark
AROAPOC3-3001	NDA	FCS			\checkmark
Pivotal Study Initiation	n			H2 2023	H1 2024
AROAPOC3-3002	Phase 3	SHTG			\checkmark
AROAPOC3-3003	Phase 3	SHTG			✓

ARO-APOC3: Addressing the Residual Risk in ASCVD New Interim Data from Ongoing MUIR Study in Mixed Dyslipidemia

MUIR Study Design: Mixed Dyslipidemia

pharmaceuticals

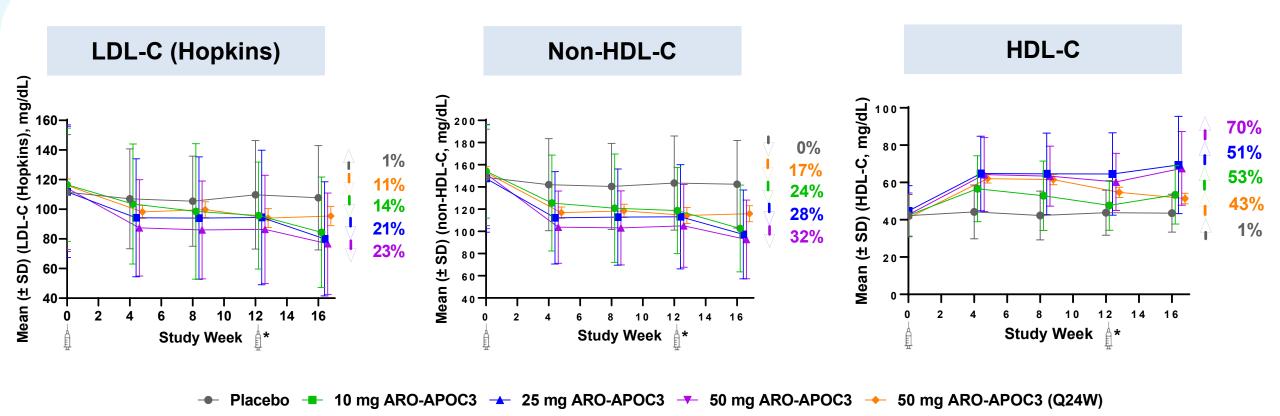
MUIR: Baseline Characteristics


	Pooled Placebo ARO-APOC3 (W0 and W12)			12)	ARO-APOC3 (W0 and W24)
	(N=84)	10 mg (N=65)	25 mg (N=67)	50 mg (N=66)	50 mg (N=64)
Mean (SD) age, years	58.8 (9.9)	60.5 (11.4)	61.3 (11.3)	62.6 (10.5)	61.2 (11.9)
Female, n (%)	40 (47.6%)	30 (46.2%)	29 (43.3%)	29 (43.9%)	23 (35.9%)
White, n (%)	76 (90.5%)	61 (93.8%)	60 (89.6%)	63 (95.5%)	61 (95.3%)
Mean (SD) BMI, kg/m ²	31.40 (5.357)	30.51 (5.687)	32.13 (6.386)	32.56 (6.530)	31.99 (5.623)
Mean (SD) APOC3, mg/L	14.7 (5.1)	15.4 (5.4)	15.5 (5.8)	14.8 (6.0)	15.1 (5.6)
Median (Q1, Q3) triglyceride, mg/dL	222.90 (181.8, 283.9)	223.70 (195.2, 318.8)	208.40 (174.8, 278.2)	235.85 (185.4, 300.8)	226.20 (187.2, 298.2)
Mean (SD) LDL-C (Hopkins), mg/dL	111.6 (38.8)	116.6 (38.3)	111.7 (44.4)	114.3 (42.8)	116.1 (35.2)
Mean (SD) non-HDL-C, mg/dL	148.6 (43.5)	154.2 (42.3)	147.7 (48.4)	151.8 (49.3)	153.0 (43.0)
Mean (SD) ApoB, mg/dL	102.3 (30.6)	99.7 (24.7)	95.5 (23.7)	93.6 (22.5)	100.1 (22.3)
Mean (SD) remnant cholesterol, ^a mg/dL	45.9 (20.2)	48.7 (20.9)	46.4 (20.6)	48.6 (27.1)	46.0 (23.5)
Mean (SD) HDL-C, mg/dL	42.2 (11.4)	42.4 (11.2)	44.7 (13.6)	42.7 (11.7)	41.0 (12.8)

^a Based on calculation: Total cholesterol – HDL-C – LDL-C (ultracentrifugation)

Muir: Data cutoff 01 Sept 2022

MUIR: ARO-APOC3 Results in Durable Decreases in Serum APOC3 and Triglycerides at All Doses Studied



→ Placebo → 10 mg ARO-APOC3 → 25 mg ARO-APOC3 → 50 mg ARO-APOC3 → 50 mg ARO-APOC3 (Q24W)

*Dose given only for cohorts receiving Q12W dose ^a Based on calculation: Total cholesterol – HDL-C – LDL-C (ultracentrifugation)

MUIR: ARO-APOC3 Decreases Serum LDL-C, Non-HDL-C and Increases HDL-C

*Dose given only for cohorts receiving Q12W dose

MUIR STUDY: Summary of Adverse Events

Total Number of Subjects	348
<pre># of Subjects Reporting > 1 Treatment Emergent Adverse Event (TEAE) N (%)</pre>	126/348 (36.2%)
TEAEs occurring in \geq 5 subjects	
Covid 19	12 (3.4%)
Headache	11 (3.2%)
Cystitis	10 (2.9%)
Diabetes (Type 2 DM, Glycated hemoglobin increased)	10 (2.9%)
Upper Respiratory Tract Infection	7 (2.0%)
Urinary Tract Infection	6 (1.7%)
Back Pain	5 (1.4%)
Lipase increased	5 (1.4%)
Treatment-related TEAEs	22 (6.3%)
Serious TEAEs	8 (2.3%)
TEAEs leading to drug discontinuation, dose interruptions, or study withdrawal	2 (0.6%)
TEAEs causing deaths	1 (0.3%)
o arrowhead Cardiometabolic Virtu	ual Investor Event November 9, 2022

- TEAEs reported to date reflect the underlying comorbidities and conditions of the population under study
- All TEAEs were pooled regardless of treatment assignment
- Mean change from baseline in HbA1c at Week 16 across cohorts was 0.17% to 0.36% in subjects receiving ARO-APOC3, and -0.01% in subjects receiving placebo, driven by patients with baseline diabetes

harmaceuticals

Beyond LDL-C Control: What Drives the Residual Risks in ASCVD?

PROVE IT-TIMI 22⁴ Copenhagen General Population Study and TG and HDL Working Group⁵ Mendelian Randomization Study \uparrow APOC3 associated with \downarrow Remnant cholesterol associated with ٠ \downarrow TGs associated with \downarrow risk of CHD in cumulative probability of freedom risk of ASCVD events 1,2,3 statin-treated patients from CHD 0.20 Middle third TG ≥ 150 Hazard ratio HR: 0.73 Lowest third Freedom from CHD (0.62, 0.87)0.9-8. P < 0.001 0.15 Highest third 7 -(%) 0.8 TG < 150 Event Rate 6. Probability of Cumulative 0.7 Myocardial 5 infarction 0.05-4. Stroke 0.6 3 -Mortality 0.00 2. Aortic 0.5 150 330 510 700 stenosis 0 00 1000 2000 3000 4000 5000 Days after Month 1 Visit 6000 7000 (N=2913) (N=2722) (N=2485) (N=1390) No. at Risk Days mmol/L 2.5 3 58 77 97 116 mg/dL Lowest third: APOC3 levels \leq 14.2 mg/dL 1066 TG > 150 1157 1017 659 TG < 1501278 2242 2119 2041 Middle third: APOC3 levels 14.3 - 17.9 mg/dL Nonfasting remnant cholesterol Highest third: APOC3 levels \geq 18.0 mg/dL

¹Miller M. JACC 2008;51:724-30; ²Langsted A. J Intern Med 2020;288:116-27; ²TG and HDL Working Group. N Engl J Med 2014;371:22-31 ⁴Miller M. JACC 2008;51:724-30; ⁵Kaltoft M. E Heart J 2020;41:2288-99.

ARO-APOC3 Addresses Lipid Abnormalities Associated with Increased Cardiovascular Risk

- Elevated atherogenic lipids
 - LDL-C
 - VLDL-C
 - Remnant cholesterol
 - Elevated TG
 - Low HDL-C
- Patients at risk despite maximally tolerated statins ~ 12 M in US¹

ARO-APOC3 Improves Lipid Parameters Across Multiple Dyslipidemia Populations

	Phase 1 Healthy Volunteers Repeat Dose (Day 1, 29)	Phase 3	ase 2 Mixed Dyslipidemia Repeat Dose (Day 1, Week 12)		
	Pooled Active (n=11)	ARO-APOC3 10 mg (N=65)	ARO-APOC3 25 mg (N=67)	ARO-APOC3 50 mg (N=66)	
Baseline mean (SD) LDL-C (Hopkins) , mg/dL	154.8 (50.5)*	116.6 (38.3)	111.7 (44.4)	114.3 (42.8)	
Mean % Δ (SD) at Wk 16	-20.1% (15.9%)	-14.4% (31.3%)	-20.8% (20.4%)	-23.2% (28.8%)	
Baseline mean (SD) Non-HDL-C , mg/dL	184.2 (52.9)	154.2 (42.3)	147.7 (48.4)	151.8 (49.3)	
Mean % Δ (SD) at Wk 16	-27.7% (12.2%)	-24.3% (26.0%)	-27.8% (17.4%)	-31.7% (24.5%)	
Baseline mean (SD) ApoB , mg/dL	116.8 (32.8)	99.7 (24.7)	95.5 (23.7)	93.6 (22.5)	
Mean % Δ (SD) at Wk 16	-25.5% (10.5%)	10.0% (33.3%)	- 20.4% (10.8%)	- 24.5% (16.0%)	
Baseline median (min, max) TGs , mg/dL*	135.0 (101, 198)	223.7 (195, 319)	208.4 (175, 278)	235.9 (185, 301)	
Median % Δ at Wk 16	-66.3%	-67.9%	-64.6%	-73.3%	
Baseline mean (SD) HDL-C , mg/dL	45.7 (7.4)	42.4 (11.2)	44.7 (13.6)	42.7 (11.7)	
Mean % Δ (SD) at Wk 16	39.0% (28.3%)	53.2% (50.8%)	51.0% (28.8%)	70.1% (37.0%)	

of arrowhead

* LDL-C (direct) reported for Ph1

ARO-APOC3 Reduces Key Residual ASCVD Risk Factors

Average Lipid Profiles in MUIR

	APOC3	TG	Non-HDL-C	LDL-C	АроВ	Remnant Cholesterol	HDL-C
Pre-treatment	15	220	150	110	95	46	42
Post-treatment	3	77	108	88	76	18	63
% change	-80%	-65%	-28%	-20%	-20%	-60%	+50%

ARO-APOC3 Planned Clinical Development (ASCVD) and Registration Path

Data Readout			H2 2023	2024
ARO-APOC3-2002	Phase 2	Mixed Dyslipidemia	\checkmark	

Regulatory Interactions			H2 2023	2024
ARO-APOC3-2002	EoP2	Mixed Dyslipidemia	\checkmark	

Pivotal Study Initiation			H2 2023	H1 2024
ARO-APOC3-3004	Phase 3	CVOT		\checkmark

EoP2 = end of Phase 2

ARO-APOC3: Key Considerations for CVOT in Patients with Mix Dyslipidemia

- This Interim Analysis will accelerate study design
 - Patients with residual risk despite LDL-C control
 - Patients with established ASCVD
 - Patients not meeting LDL-C treatment goal
 - Modeling to estimate event rates and effect size
 - Length of study
 - Dose and interval

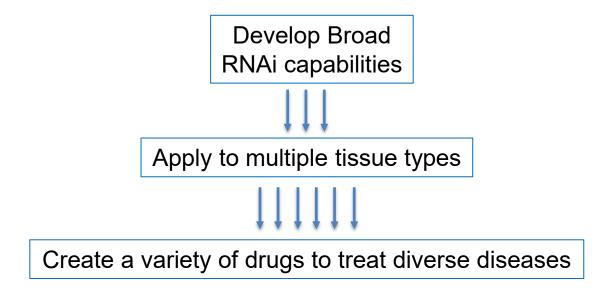
Cardiometabolic Strategy

- Pursuing 5 indications
 - ARO-APOC3
 - Familial Chylomicronemia Syndrome
 - Severe Hypertriglyceridemia
 - Treatment of mixed dyslipidemia: ASCVD risk reduction
 - ARO-ANG3
 - Homozygous Familial Hypercholesterolemia
 - Heterzygous Familial Hypercholesterolemia

Concluding Remarks

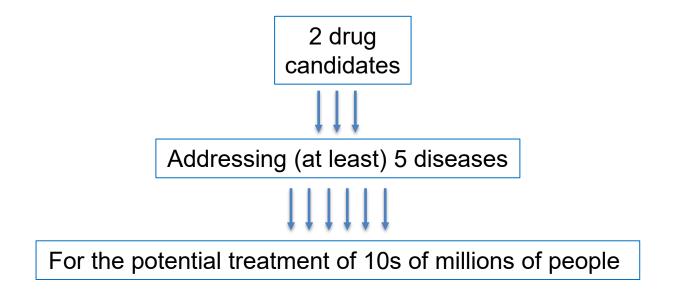
Chris Anzalone, PhD Chief Executive Officer Arrowhead Pharmaceuticals

RNAi is on the Cusp of Changing Cardiometabolic Treatment


- Leqvio® could change the PCSK9 market
- Olpasiran could change the way LP(a) is addressed
- ARO-ANG3 could change the way familial hypercholesterolemia is treated
- ARO-APOC3 could change the way triglyceridemia and dyslipidemia are treated

Not very long ago, the only treatments were diet and statins: So these innovations represent substantial leaps forward

Arrowhead developed 3 of these 4 drug candidates


Our Business Model Relies on Leverage

Designed to maximize ROI and the clinical reach of our technology

Cardiometabolic Franchise is an Example of Leverage

Currently running 1 cardiometabolic Phase 3 and expect 4 additional over next 18 months

Staged Commercial Approach: Small to Large

Enables us to:

- Interact with patients and physicians early
- Learn from the market before addressing larger indications
- Build out commercial infrastructure at a measured pace

Access to Sufficient Capital

- \$582m of cash and equivalent reported in last filing on form 10-q
- Currently have 6 partnered programs with 5 different companies
 - Expect to receive milestone payments from each company over next 12 months
- Given our platforms, we expect ~1 new partnership every year
- Sale of potential royalties from Amgen on future Olpasiran sales for \$250m up front
 - Eligible for up to \$160m in additional payments from Royalty Pharma
 - Eligible for up to \$400m in milestone payments from Amgen

Entering the Golden Age of Treating Cardiometabolic Diseases

- Multiple tools to treat multiple risk factors
- Enabling physicians to dial in personalized treatment paradigms
- Providing millions of patients with new hope

Arrowhead is leading the way

Q & A - Panel

