Treatment With siRNA JNJ-73763989 Plus Nucleos(t)ide Analogue (NA) Decreases HBsAg and HDV RNA Levels in Patients With Chronic Hepatitis D (CHD): Part 1 of the REEF-D Study

Heiner Wedemeyer,¹ Ed Gane,² Kosh Agarwal,³ Ömer Fehmi Tabak,⁴ Xavier Forns,⁵ Ulus Salih Akarca,⁶ Viacheslav Morozov,⁷ Soo Aleman,⁸ Maria Buti,⁹ Gurdal Yilmaz,¹⁰ Pietro Lampertico,^{11,12} Julia Niewczas,¹³ John Jezorwski,¹⁴ Thomas N. Kakuda,¹⁵ Isabelle Benoot,¹⁶ Nonko Pehlivanov,¹⁷ Oliver Lenz,¹⁶ Michael Biermer¹⁶

¹Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany; ²New Zealand Liver Transplant Unit, University of Auckland, Auckland, New Zealand; ³Institute of Liver Studies, King's College Hospital, London, England; ⁴Istanbul University, Istanbul, Turkey; ⁵Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain; ⁶Division of Gastroenterology, Department of Internal Medicine, University of Ege School of Medicine, Izmir, Turkey; ⁷Medical Company Hepatolog Ltd, Samara, Russia; ⁸Department of Infectious Diseases, Karolinska University Hospital/Karolinska Institutet, Stockholm, Sweden; ⁹Hospital General Universitari Valle Hebron and CIBER-EHD del Instituto Carlos III, Barcelona, Spain; ¹⁰Trabzon Karadeniz Technical University Farabi Hospital, Trabzon, Turkey; ¹¹Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy; ¹²CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; ¹³Janssen-Cilag, Solna, Sweden; ¹⁴Janssen Research & Development, LLC, Titusville, NJ, USA; ¹⁵Janssen Research & Development, LLC, Raritan, NJ, USA.

Final abstract number: OS-030

Oral presentation at the European Association for the Study of the Liver (EASL) International Liver Conference™; June 21-24, 2023; Vienna, Austria.

REEF-D: Chronic Hepatitis D (CHD)

- Hepatitis D is the most severe form of chronic viral hepatitis
 - High risk for developing liver cirrhosis, decompensation, and HCC^{1,2}
- PegIFN-α and bulevirtide (conditional approval in the European Union) can be used to treat hepatitis D³
- Limitations of current therapies:
 - PegIFN- α : low efficacy, side effects⁴
 - Bulevirtide: daily injections, long-term treatment, no effect on HBsAg levels⁵
- HDV requires HBsAg to form infectious viral particles⁶
- Therefore, targeting HBsAg could be a therapeutic option for delta co-infection

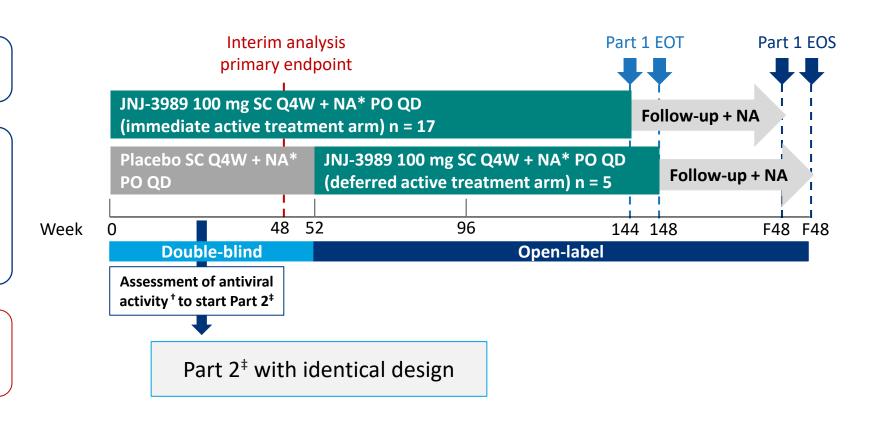
REEF-D: siRNA JNJ-3989 in CHD

- JNJ-3989 is a liver-targeted siRNA that targets all HBV RNAs for degradation, thereby reducing all HBV proteins and pregenomic RNA¹
- Results from phase 2a (NCT03365947, AROHBV1001)² and phase 2b (NCT03982186, REEF-1; NCT04129554, REEF-2)^{3,4} clinical trials in patients with CHB have demonstrated pronounced reductions in HBsAg with JNJ-3989 (REEF-1: 48 weeks; 40, 100, and 200 mg; REEF-2: 48 weeks; 200 mg) in combination with NA
- In REEF-D, patients with CHD are treated with 100 mg JNJ-3989 Q4W SC + NA QD for up to 144 weeks
 - This is the first time an HBsAg targeting siRNA is used to treat patients with CHD
 - Here, we report the 48-week interim analysis of Part 1 and available data after Week 48

CHB, chronic hepatitis B; HBV, hepatitis B virus; JNJ-3989, JNJ-73763989; NA, nucleos(t)ide analogue; Q4W, every 4 weeks; QD, daily; SC, subcutaneous; siRNA, small interfering RNA.

^{1.} Gane E, et al. Presented at: European Association for the Study of the Liver (EASL) Digital International Liver CongressTM; August 27-29, 2020; Virtual. Oral GS10.

^{2.} Yuen MF, et al. J Hepatol. 2022;77(5):1287-1298. 3. Yuen MF, et al. Lancet Gastroenterol Hepatol. 2023. Accepted manuscript.


^{4.} Agarwal K, et al. Presented at: American Association for the Study of Liver Diseases (AASLD) – The Liver Meeting®; November 4-8, 2022. Abstract 5012.

REEF-D (NCT04535544): Study Design

Phase 2, multicenter, randomized (4:1), 2-part, double-blind, placebo-controlled, parallel

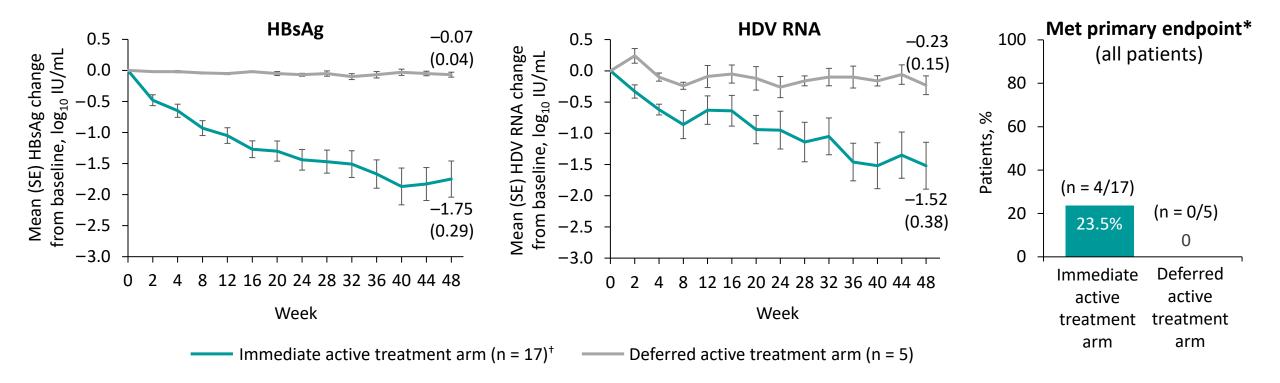
- Patients aged 18 to 65 years
- Chronic hepatitis D: HDV RNA >1,000 IU/mL
- ALT >ULN and <10 \times ULN
- Patients with compensated cirrhosis were eligible for Part 1 (platelets >100/nL)

Primary endpoint: HDV RNA ≥2 log₁₀ IU/mL decline from baseline or HDV RNA TND with normal ALT at Week 48

ALT, alanine transaminase; EOS, end of study; EOT, end of treatment; ETV, entecavir; F, follow-up; LLOQ, lower limit of quantification; PO, oral; TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate; TND, <LLOQ target not detected.

^{*}ETV/TDF/TAF according to label. $^{\dagger}\geq 8$ JNJ-3989-treated patients with ≥ 0.5 \log_{10} reduction from baseline in HBsAg and HDV RNA and 4 of those with ≥ 1 \log_{10} reduction in HDV RNA. † Part 2 of the study will be presented at a later date.

REEF-D: Demographic and Baseline Characteristics


Characteristic*	Immediate active treatment arm	Deferred active treatment arm	Total
N	17	5	22
Demographics			
Male, n (%)	9 (52.9)	2 (40.0)	11 (50.0)
Age, years	40.9 (10.4)	44.2 (11.9)	41.6 (10.6)
White, n (%)	13 (76.5)	4 (80.0)	17 (77.3)
Disease characteristics			
HBsAg, log ₁₀ IU/mL	4.1 (0.5)	3.8 (0.6)	4.0 (0.5)
HDV RNA, log ₁₀ IU/mL	5.1 (1.0)	5.1 (0.9)	5.1 (0.9)
HBV DNA <lloq, (%)<sup="" n="">†</lloq,>	11 (64.7)	5 (100)	16 (72.7)
ALT, U/L	74.9 (48.0)	95.0 (87.2)	79.5 (57.2)
HBeAg positive, n (%)	3 (17.6)	1 (20.0)	4 (18.2)
NA treatment, n (%) [‡]	7 (41.2)	3 (60.0)	10 (45.5)
FibroScan® score, n (%)			
≥2 and <12.5 kPa	12 (70.6)	4 (80.0)	16 (72.7)
≥12.5 kPa	5 (29.4)	1 (20.0)	6 (27.3)

HBeAg, hepatitis B e antigen; SD, standard deviation.

^{*}Mean (SD) unless otherwise noted. †HBV DNA <LLOQ (20 IU/mL). ‡Patients on NA treatment at screening.

REEF-D: Change in HBsAg and HDV RNA Over Time

- Treatment with JNJ-3989 led to robust reductions in HBsAg and HDV RNA
- The antiviral activity criteria[‡] to start Part 2 of the study were met

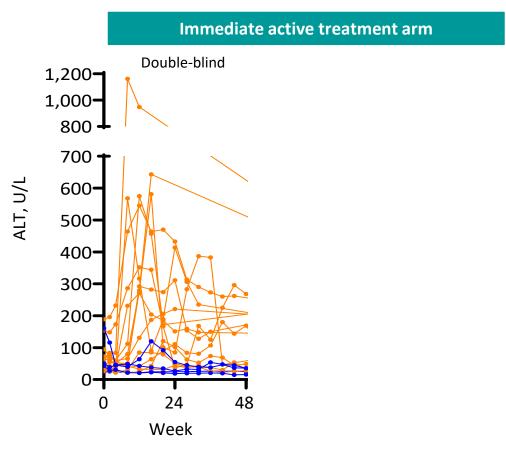
^{*}HDV RNA $\geq 2 \log_{10} IU/mL$ decline from baseline or undetectable in combination with normal ALT at Week 48. [†]Data in the immediate active arm are available for 17 patients up to Week 12, and for 14, 11, and 9 patients at Weeks 24, 36, and 48, respectively, due to early JNJ-3989 treatment discontinuation. ^{‡8} JNJ-3989–treated patients with $\geq 0.5 \log_{10} reduction$ from baseline in HBsAg and HDV RNA, and 4 of those with $\geq 1 \log_{10} reduction$ in HDV RNA.

SE, standard error.

REEF-D: Safety

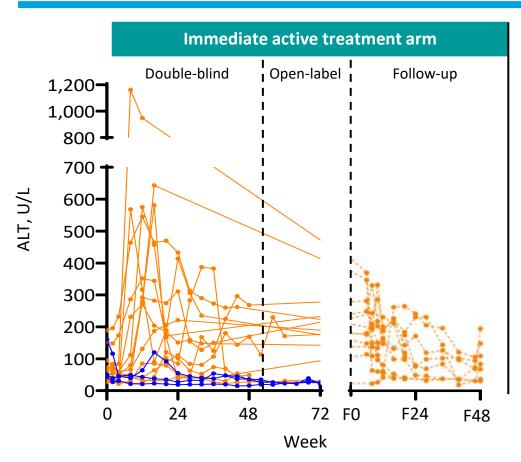
	Immediate active treatment arm (n = 17)	Deferred active treatment arm (n = 5)
Patients with ≥1 AEs, n (%)	17 (100)	3 (60.0)
Related AEs	12 (70.6)	1 (20.0)
Related to JNJ-3989/placebo	11 (64.7)	1 (20.0)
Related to NA	4 (23.5)	1 (20.0)
AEs leading to death	0	0
SAEs, n (%)	2 (11.8)	0
Related SAEs*	2 (11.8)	0
AEs leading to discontinuation of any study treatment, n (%) [†]	4 (23.5)	0
Grade 3 or 4 AEs, n (%) [‡]	6 (35.3)	0
Related Grade 3 or 4 AEs	6 (35.3)	0
AEs of special interest, n (%)		
ALT [§] /AST elevations	13 (76.5)	0
Injection-site reactions	1 (5.9)	0
Renal complications	0	0
Cholesterol increases	2 (11.8)	0
Hematologic abnormalities	0	0

• Of 6 patients with **compensated cirrhosis**, 5 received JNJ-3989 and 4 experienced an ALT elevation; safety profiles were not different from non-cirrhotic patients, with **no signs of reduced liver function during flare**

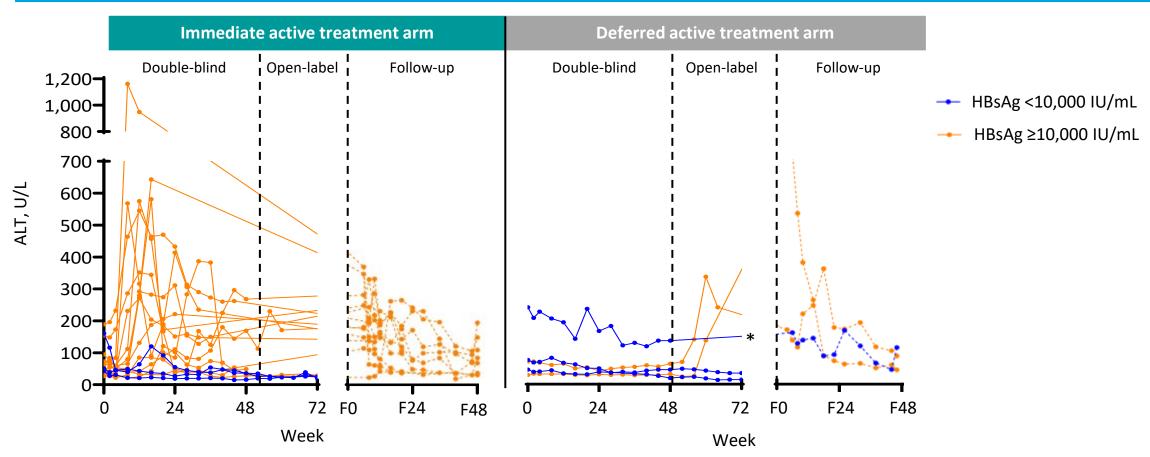

AE, adverse event; AST, aspartate transaminase; SAE, serious adverse event.

^{*}Transaminases increased and ALT/AST flare occurred in 1 patient each. †Not all ALT/AST elevations leading to discontinuation prior to Week 48 (n = 8) were reported as AEs.

[‡]No cases of decompensation. [§]Confirmed (2 consecutive visits) ALT ≥3 × ULN and ≥2 × nadir


REEF-D: Individual ALT Levels Over Time by Baseline HBsAg Level

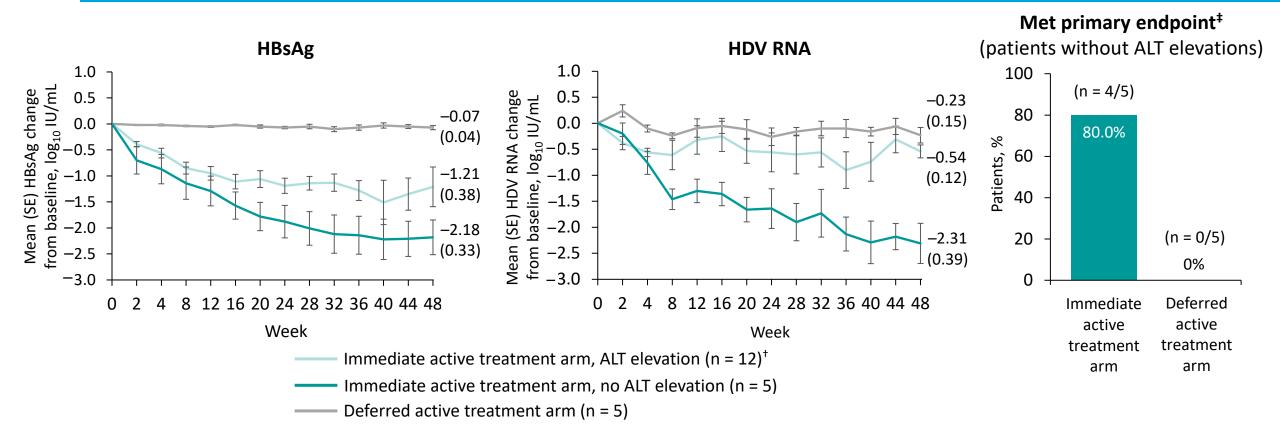
• 12/17 patients in the immediate active treatment arm experienced ALT elevations[†] (starting mainly between weeks 8 and 20)


REEF-D: Individual ALT Levels Over Time by Baseline HBsAg Level

• 12/17 patients in the immediate active treatment arm experienced ALT elevations[†] (starting mainly between weeks 8 and 20) leading to treatment discontinuation

REEF-D: Individual ALT Levels Over Time by Baseline HBsAg Level

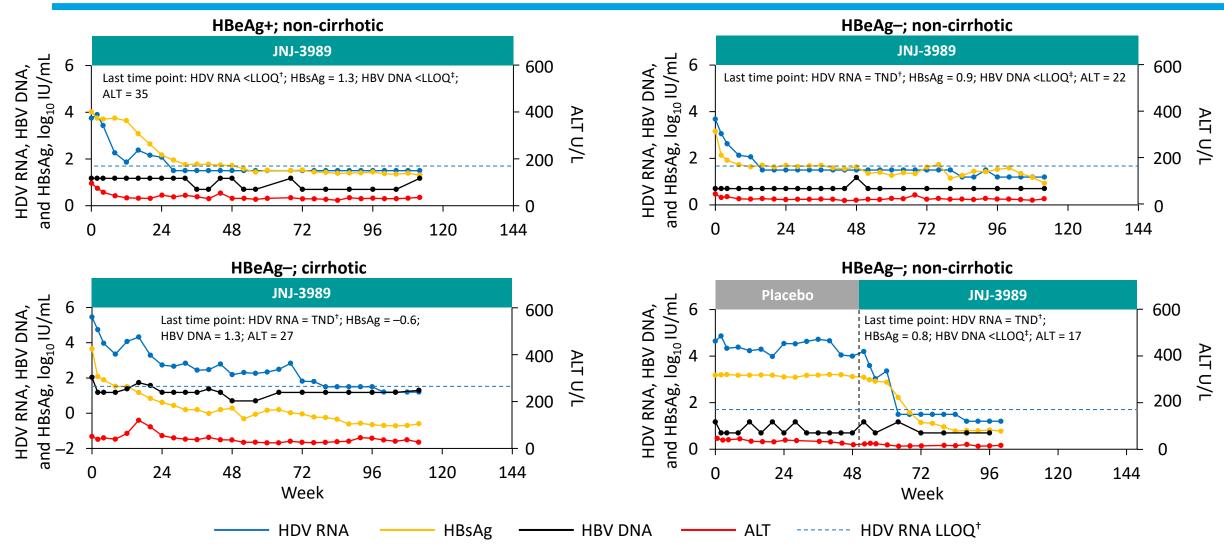
• 12/17 patients in the immediate active treatment arm experienced ALT elevations[†] (starting mainly between weeks 8 and 20) leading to treatment discontinuation


Available data beyond Week 48 are included. F, follow-up.

 $^{^{\}dagger}$ Confirmed (2 consecutive visits) ALT ≥3 × ULN and ≥2 × nadir.

^{*}This patient did not receive JNJ-3989 during the open-label phase and moved directly to the follow-up phase due to cirrhosis.

REEF-D: HBsAg and HDV RNA Over Time by ALT Elevation* Status

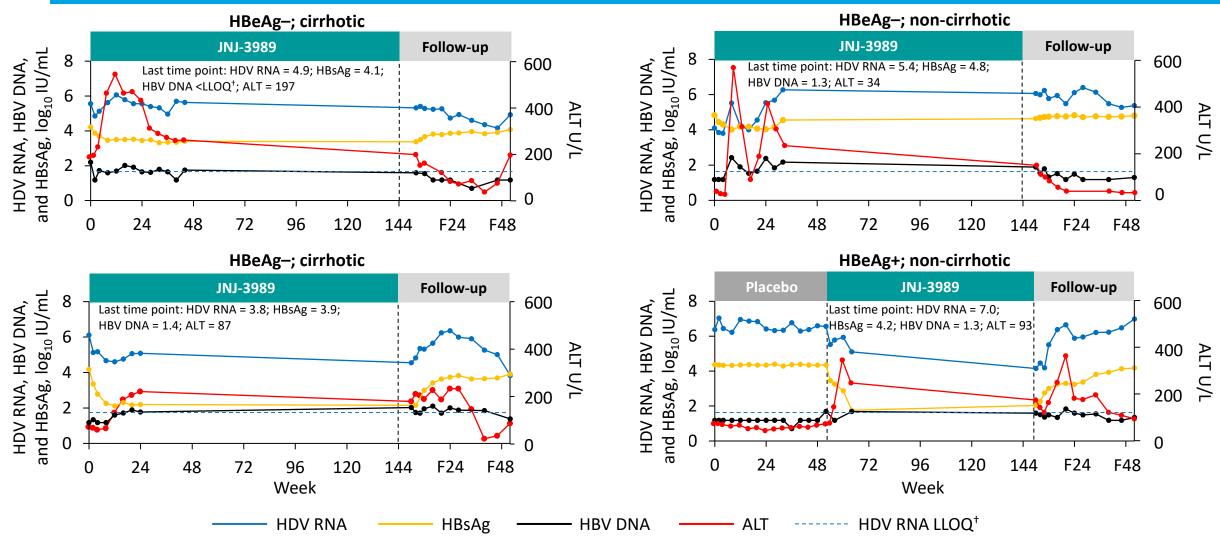


ALT elevations* were associated with on-treatment rebound of HDV RNA

Janssen Infectious Diseases & Vaccines

^{*}Confirmed (2 consecutive visits) ALT \geq 3 × ULN and \geq 2 × nadir. †Data in this group are available for 12, 9, 6, and 4 patients at Weeks 12, 24, 36, and 48, respectively. †HDV RNA \geq 2 log₁₀ IU/mL decline from baseline or undetectable in combination with normal ALT at Week 48.

REEF-D: Representative Patient Profiles Without ALT Elevations*

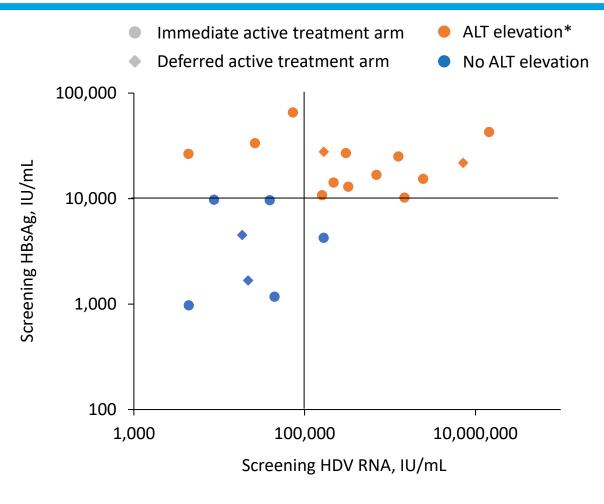


All available data beyond Week 48 are shown.

^{*}Confirmed (2 consecutive visits) ALT \geq 3 × ULN and \geq 2 × nadir. [†]HDV RNA LLOQ = 1.8 log₁₀ IU/mL. TND: <LLOQ target not detected. [‡]HBV DNA <LLOQ = 1.3 log₁₀ IU/mL

REEF-D: Representative Patient Profiles With ALT Elevations*

All available data beyond Week 48 are shown.


NCT, not currently treated.

^{*}Confirmed (2 consecutive visits) ALT \geq 3 × ULN and \geq 2 × nadir. [†]HBV DNA <LLOQ = 1.3 log₁₀ IU/mL.

REEF-D: Screening Factors Associated With ALT Elevations*

Number of patients	ALT elevation*	No ALT elevation
HDV RNA <100,000 IU/mL	3	6
HDV RNA ≥100,000 IU/mL	11	1
HBsAg <10,000 IU/mL	0	7
HBsAg ≥10,000 IU/mL	14	0
Compensated cirrhosis, yes	4	1
Compensated cirrhosis, no	10	6
NA: TDF/TAF	12	6
NA: ETV	2	1

• ALT elevations* were more frequent in patients with high screening HBsAg and HDV RNA levels

²¹ patients receiving JNJ-3989 were included in this analysis (1 deferred active treatment arm patient with cirrhosis was excluded due to not receiving JNJ-3989).

^{*}Confirmed (2 consecutive visits) ALT \geq 3 × ULN and \geq 2 × nadir.

REEF-D: Summary

- JNJ-3989 led to robust reductions of HBsAg and HDV RNA (observed in all patients up until Week 8)
- 12/17 (71%) patients in the immediate active treatment arm and 2/4 (50%) patients in the deferred active treatment arm (after rollover to JNJ-3989 at Week 52) experienced ALT elevations* that eventually led to discontinuation of JNJ-3989
 - During ALT elevations* HDV RNA levels rebounded
 - During follow-up, ALT values returned to baseline levels
- 5/17 (29%) patients in the immediate active treatment arm and 2/4 (50%) patients in the deferred active treatment arm did not experience ALT elevations*
 - At Week 48 of JNJ-3989 treatment, 5/7 (71%) patients achieved HDV RNA ≥2 log₁₀ IU/mL decline from baseline with normal ALT
 - At the last available time point, all 7 patients showed continuous reductions of HBsAg and HDV RNA and 4 patients achieved HDV RNA <LLOQ (3 patients TND) with JNJ-3989 treatment lasting up to 112 weeks

REEF-D: Conclusions

- The HBsAg-targeting agent JNJ-3989 leads to reduction of HBsAg and HDV RNA early during treatment in patients with CHD
- The antiviral activity criteria to start Part 2 of the study were met, and treatment in Part 2, with adapted inclusion criteria, is ongoing
- Clinically relevant ALT elevations* are frequently observed, during which, HDV RNA rebounded
 - The underlying mechanism is not understood
 - A similar pattern of ALT elevation* was not seen in HBV mono-infected patients treated with JNJ-3989
 - The risk of ALT elevation* was greater in patients with high HBsAg (≥10,000 IU/mL) and HDV RNA (≥100,000 IU/mL)
 levels at baseline
- In the absence of ALT elevation,* pronounced reductions in HDV RNA are maintained with continued treatment

Acknowledgments

- We would like to thank all investigators, staff, and patients who participated in this study, which was conducted during the COVID-19 pandemic
- The REEF-D study is sponsored by Janssen Research & Development, LLC
- Medical writing support was provided by Kim Caldwell, PhD, of Lumanity Communications Inc., and was funded by Janssen Global Services, LLC

