Short-term treatment with RNA interference therapy, JNJ-3989, results in sustained hepatitis B surface antigen suppression in patients with chronic hepatitis B receiving nucleos(t)ide analogue treatment

Edward Gane¹, Stephen Locarnini², Tien Huey Lim³, Simone Strasser⁴, William Sievert⁵, Wendy Cheng⁶,⁷, Alex Thompson⁶, Bruce Given⁹, Thomas Schluep⁹, James Hamilton⁹, Michael Biermer¹⁰, Ronald Kalmeijer¹¹, Maria Beumont¹¹, Oliver Lenz¹⁰, Gavin Cloherty¹², Danny Ka-Ho Wong¹³, Christian Schwabe¹, Kathy Jackson², Carlo Ferrari¹⁴, Ching Lung Lai¹³, Robert G. Gish¹⁵, Man-Fung Yuen¹³

¹Auckland Clinical Studies, Auckland, New Zealand; ²Victorian Infectious Diseases Reference Laboratory, Victoria, Australia; ³Middlemore Hospital, Auckland, New Zealand; ⁴Royal Prince Alfred Hospital, Sydney, Australia; ⁵Monash Health and Monash University, Melbourne, Australia; ⁶Royal Perth Hospital, Perth, Australia; ⁷Linear Clinical Research, Perth, Australia; ⁸St. Vincent’s Hospital, Melbourne, Australia; ⁹Arrowhead Pharmaceuticals, Pasadena, CA, USA; ¹⁰Janssen Pharmaceuticals BV, Beerse, Belgium; ¹¹Janssen R&D, Titusville, NJ, USA; ¹²Abbott Diagnostics, Abbott Park, IL, USA; ¹³The University of Hong Kong, Hong Kong, China; ¹⁴University of Parma, Parma, Italy; ¹⁵Hepatitis B Foundation, Doylestown, PA, USA
Disclosures for all authors

- **EG** has been an advisor and/or speaker for AbbVie, Arrowhead, Assembly, Gilead, GSK, Janssen, Merck, Novartis, Roche and Vir Bio.
- **SL** receives consulting fees from Roche Molecular, AusBio Ltd, Janssen, Abbvie and Clear-B, and contract research grants from Spring Bank Pharmaceuticals, Inc. and Clear-B.
- **SS** has received honoraria for advisory boards or speaker fees from Gilead, BMS, AbbVie, MSD, Bayer, Eisai, Ipsen, Pfizer and CSL.
- **AT** has served on advisory boards for Gilead, Abbvie, Merck, BMS, Bayer and Eisai, has received speaker fees from Gilead, Abbvie, Merck and BMS, and has received institutional research grants from Gilead, Abbvie and Merck.
- **BG, TS, and JH** are employees of Arrowhead.
- **MB, RK, MB, and OL** are employees of Janssen Pharmaceuticals and may be Johnson & Johnson stockholders.
- **GC** is an Abbott employee and shareholder.
- **CS** has provided advice to Johnson & Johnson and Vir Biotechnology.
- **CF** is an advisory board member for Gilead, Roche, MSD, Abbvie, BMS and Vir, a consultant for Gilead, Arrowhead, Abbvie, Humabs (Ch), Abivax and Transgene, and receives research grants from Gilead, Roche, Abbvie and Bristol Myer Squibb.
- **CLL** discloses sponsored lectures for Gilead Sciences
- **RGG** had grants/research support from Gilead is/has been a consultant and/or advisor to Abbot, Abbvie, Access Biologicals, Antios, Arena, Arrowhead, Bayer AG, Bristol Myers Squibb, Dova, Dynavax, Eiger, Eisai, Enyo, eStudySite, Exelixis, Forty-Seven Inc, Genlantis, Gerson Lehrmann Group, Gilead Sciences, HepaTX, HepQuant, Intercept, Ionis, Janssen, Laboratory for Advanced Medicine, Lilly, Merck, Salix, Shionogi, Spring Bank, and Viking Therapeutics, hold positions on scientific or clinical advisory boards for: Abbot, AbbVie, Merck, Arrowhead, Bayer, Dova Pharmaceuticals, Eiger, Enyo, Hatch Biofund, HepQuant, Intercept, Jansen, Medimmune is an advisory consultant for Biocollections, Fujifilm/Wako, and Quest, is on the data safety monitoring board for Ionis, and Eiger, has consultant confidentiality agreements with: Abbot, Abbvie, Access Biologicals, ADMA Biologics, AEC Partners, Aligos Therapeutics, Arena Pharmaceuticals, Arrowhead, ArteryS Inc, Alexion, Altimmune, Antios Therapeutics, AprosTx, Bayer, Cirina, Consumer Health Products Assoc, DiaSorin Inc, Dova Pharmaceuticals, DRG Abacus, Dynavax, Echosens, Eiger, Enyo, Exelixis, Forty-Seven Inc, Fujifilm Wako, Diagnostics, Gilead, HepQuant, HepaTX, IDLogiq, Intella, Intercept, Inotek, Iqvia, Janssen/J&J, KannaLife, Laboratory for Advanced Medicine, Labyrinth Holdings, Lilly, MedImmune, Merck, New Enterprise Associates, Ogilvy CommonHealth, Organovo, Patient Connect, Prodigy Biotech, Prometheus Laboratories, Refuah Solutions, Regulus Therapeutics, Salix, Shionogi, Spring Bank, Trimaran, and Viking Therapeutic, has speaker contracts with Abbvie, Bayer, Bristol Myers Squibb, Dova Pharmaceuticals, Eisai, Gilead, Intercept, Salix, and Shionogi, is a minor stock shareholder in RiboSciences, has stock options in Eiger, AngioCrine, and HepQuant;
- **M-FY** serves as advisor/consultant for AbbVie, Arbutus Biopharma, Bristol Myer Squibb, Dicerna Pharmaceuticals, GlaxoSmithKline, Gilead Sciences, Janssen, Merck Sharp and Dohme, Clear B Therapeutics and Springbank Pharmaceuticals, and receives grant/research support from Assembly Biosciences, Arrowhead Pharmaceuticals, Bristol Myer Squibb, Fujirebio Incorporation, Gilead Sciences, Merck Sharp and Dohme, Springbank Pharmaceuticals and Sysmex Corporation.
- **T-HL, WS, WC, DK-HW and KJ** have no disclosures
JNJ-3989 and a nucleos(t)ide analogue: Mechanisms of action

- NAs inhibit viral replication but do not prevent the production of HBsAg
- Previously reported data up to Day 112 (8 weeks after the JNJ-3989 dose) showed that treatment with JNJ-3989 (100–400 mg) in combination with an NA (TDF or ETV) resulted in reductions in HBsAg, HBeAg, HBV RNA and HBcrAg, and was well tolerated in patients with CHB

cccDNA = covalently closed circular DNA; CHB, chronic hepatitis B; ETV, entecavir; HBeAg, hepatitis B e antigen; HBcrAg, hepatitis B core related antigen; HBsAg, hepatitis B surface antigen; NA = nucleos(t)ide analogue; pgRNA = pregenomic RNA; siRNA = short interfering RNA; TDF, tenofovir
AROHBV1001: Study design

Open-label part in patients with CHB, focus on cohorts receiving JNJ-3989 3 X Q4w

Study population:
1. CHB HBeAg-positive or -negative patients
2. NA-experienced or -naïve patients

Dose administration:
- Injections (sc) of JNJ-3989 were given on Days 0, 28 and 56
- Oral QD treatment with TDF or ETV was started or continued on Day 0 and was administered beyond end of JNJ-3989 treatment

Assessments:
1. Viral parameters from Day 0 to Day 392, i.e., 48 weeks after the last JNJ-3989 dose
2. Safety from Day 0 to Day 336, i.e., 40 weeks after the last JNJ-3989 dose

<table>
<thead>
<tr>
<th>Cohort</th>
<th>N</th>
<th>JNJ-3989 dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2b</td>
<td>8</td>
<td>100 mg</td>
</tr>
<tr>
<td>3b</td>
<td>8</td>
<td>200 mg</td>
</tr>
<tr>
<td>4b</td>
<td>8</td>
<td>300 mg</td>
</tr>
<tr>
<td>5b</td>
<td>8</td>
<td>400 mg</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>300 mg</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>300 mg</td>
</tr>
</tbody>
</table>

CHB = chronic hepatitis B; ETV = entecavir; HBeAg = hepatitis B e-antigen; NA = nucleos(t)ide analogue; Q4w = every 4 weeks; QD = once daily; sc = subcutaneous; TDF = tenofovir
AROHBV1001: Objectives of analysis

The objectives of this analysis of JNJ-3989 were to assess sustained response in HBsAg, HBV RNA, HBeAg and HBcrAg up to Day 392, 48 weeks after the last JNJ-3989 dose in patients with CHB continuing with NA treatment from Day 0 to end of study.

Patients receiving 3 doses of JNJ-3989 (Q4w) 100–400 mg and having reached Day 392 were classified as sustained responders and non-sustained responders based on HBsAg response:

Sustained responder
≥1 log₁₀ IU/mL reduction in HBsAg from Day 0 to Day 392

Non-sustained responder
<1 log₁₀ IU/mL reduction in HBsAg from Day 0 to Day 392

Patients were included in the analyses if their HBsAg was reduced by ≥1 log₁₀ IU/mL from Day 0 at any time through Day 392.

CHB = chronic hepatitis B; HBcrAg = hepatitis B core-related antigen; HBeAg = hepatitis B e-antigen; HBsAg = hepatitis B surface antigen; HBV = hepatitis B virus; IU, international units; NA = nucleos(t)ide analogue; Q4w = every 4 weeks.
AROHVBV1001: Baseline characteristics and demographics

JNJ-3989 3 x Q4w, 100–400 mg cohort

<table>
<thead>
<tr>
<th></th>
<th>Cohort 2b 100 mg N=8</th>
<th>Cohort 3b 200 mg N=8</th>
<th>Cohort 4b 300 mg N=8</th>
<th>Cohort 5b 400 mg N=8</th>
<th>Cohort 8* 300 mg N=4</th>
<th>Cohort 9‡ 300 mg N=4</th>
<th>All patients N=40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years; mean (range)</td>
<td>51 (32.0–66.0)</td>
<td>48 (41.0–57.0)</td>
<td>52 (4.0–63.0)</td>
<td>42 (29.0–61.0)</td>
<td>37 (26.0–46.0)</td>
<td>36 (30.0–42.0)</td>
<td>45 (26.0–66.0)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>6 (75.0)</td>
<td>5 (62.5)</td>
<td>8 (100.0)</td>
<td>6 (75.0)</td>
<td>2 (50.0)</td>
<td>2 (50.0)</td>
<td>29 (72.5)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td>8 (100.0)</td>
<td>8 (100.0)</td>
<td>5 (62.5)</td>
<td>6 (75.0)</td>
<td>3 (75.0)</td>
<td>4 (100.0)</td>
<td>34 (85.0)</td>
</tr>
<tr>
<td>Asian</td>
<td>0</td>
<td>0</td>
<td>1 (12.5)</td>
<td>0</td>
<td>4 (100.0)</td>
<td>1 (2.5)</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>0</td>
<td>0</td>
<td>0 (0.0)</td>
<td>2 (25.0)</td>
<td>0</td>
<td>0</td>
<td>5 (12.5)</td>
</tr>
<tr>
<td>Other</td>
<td>8 (100.0)</td>
<td>8 (100.0)</td>
<td>2 (25.0)</td>
<td>6 (75.0)</td>
<td>1 (25.0)</td>
<td>0</td>
<td>3 (75.0)</td>
</tr>
<tr>
<td>HBeAg positive (%)</td>
<td>1 (12.5)</td>
<td>1 (12.5)</td>
<td>3 (37.5)</td>
<td>1 (12.5)</td>
<td>0</td>
<td>4 (100.0)</td>
<td>14 (35.0)</td>
</tr>
<tr>
<td>NA experienced, n (%)</td>
<td>6 (75.0)</td>
<td>8 (100.0)</td>
<td>12 (75.0)</td>
<td>7 (87.5)</td>
<td>0</td>
<td>4 (100.0)</td>
<td>32 (80.0)</td>
</tr>
<tr>
<td>Mean (SEM) HBsAg on Day 1 (IU/mL)</td>
<td>3937 (2142.0)</td>
<td>3212 (2453.0)</td>
<td>9381 (8275.0)</td>
<td>4032 (1652.0)</td>
<td>137795 (8814.0)</td>
<td>7358 (2726.0)</td>
<td>18628 (10166.0)</td>
</tr>
</tbody>
</table>

*All patients in cohort 8 were HBeAg positive and NA-experienced at baseline. ‡All patients in cohort 9 were HBeAg positive and NA-naive at baseline. HBeAg = hepatitis B e-antigen; HBsAg = hepatitis B surface antigen; IU = international units; NA = nucleos(t)ide analogue; Q4w = every 4 weeks; SEM = standard error of the mean.
AROHBV1001: Effect of JNJ-3989 and NA treatment on HBsAg

Based on cohort 2b–5b, 8 and 9 data. Bold lines with circles represents mean values. Thin lines represent individual patients. Black dotted line represents change of -1 log_{10} IU/mL from Day 0 value.

HBsAg = hepatitis B surface antigen; NA, nucleos(t)ide analogue; SE, standard error

In total, **15/38 (39%) patients** who were responders throughout the study were sustained responders at Day 392

Off-treatment sustained HBsAg responders (n=15)

Off-treatment non-sustained HBsAg responders (n=23)

HBsAg non-responder (n=1)
AROHVB1001: Effect of JNJ-3989 and NA treatment on HBV RNA levels

Based on cohort 2b–5b, 8 and 9 data. Only patients with HBV RNA levels >1 log_{10} IU/mL above LLOQ were included in this analysis. Bold lines with circles represents mean values. Thin lines represent individual patients. Black dotted line represents change of –1 log_{10} IU/mL from Day 0.

HBV = hepatitis B virus; IU = international units; NA = nucleos(t)ide analogue; SE, standard error

Reductions in HBV RNA levels were generally more pronounced in HBsAg sustained responders than non-responders through to Day 392
AROHBV1001: Effect of JNJ-3989 and NA treatment on HBeAg and HBcrAg

Of the patients with quantifiable HBeAg and HBcrAg levels on Day 0, greater reductions in HBeAg and HBcrAg were seen in HBsAg sustained responders versus non-sustained responders.

Based on cohort 2b–5b, 8 and 9 data. Only patients with HBeAg and HBcrAg levels >1log_{10} IU/mL above LLOQ were included in these analyses. Bold lines with circles represent mean values. Thin lines represent individual patients. Black dotted line represents change of –1 log_{10} IU/mL from Day 0.

*patients with HBeAg seroclearance events. HBcrAg = hepatitis B core-related antigen; HBeAg = hepatitis B e-antigen; NA = nucleos(t)ide analogue; PEIU = Paul Ehrlich international units; U, units; SE standard error
AROHBV1001: Drug-related adverse events occurring through Day 336 after last JNJ-3989 dose

<table>
<thead>
<tr>
<th>Drug-related AE in ≥ 2 patients, n (%)</th>
<th>Cohort 2b N=8 100 mg</th>
<th>Cohort 3b N=8 200 mg</th>
<th>Cohort 4b N=8 300 mg</th>
<th>Cohort 5b N=8 400 mg</th>
<th>Cohort 8† N=4 300 mg</th>
<th>Cohort 9‡ N=4 300 mg</th>
<th>All arms N=40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection site discoloration, injection site erythema, injection site bruising</td>
<td>0</td>
<td>0</td>
<td>2 mild (25.0)</td>
<td>2 mild (25.0)</td>
<td>2 mild (50.0)</td>
<td>1 mild (25.0)</td>
<td>7 (17.5)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 mild (12.5)</td>
<td>0</td>
<td>0</td>
<td>1 mild (12.5)</td>
<td>0</td>
<td>0</td>
<td>2 (5.0)</td>
</tr>
<tr>
<td>Blood creatine kinase elevated</td>
<td>0</td>
<td>0</td>
<td>1 severe (12.5)</td>
<td>0</td>
<td>1 mild (25.0)</td>
<td>0</td>
<td>2 (5.0)</td>
</tr>
<tr>
<td>Blood bilirubin increased, hyperbilirubinemia</td>
<td>0</td>
<td>1 mild (12.5)</td>
<td>1 mild (12.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (5.0)</td>
</tr>
<tr>
<td>Muscle pain</td>
<td>0</td>
<td>0</td>
<td>1 mild (12.5)</td>
<td>1 mild (12.5)</td>
<td>0</td>
<td>0</td>
<td>2 (5.0)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>0</td>
<td>1 mild (12.5)</td>
<td>0</td>
<td>1 mild (12.5)</td>
<td>0</td>
<td>0</td>
<td>2 (5.0)</td>
</tr>
</tbody>
</table>

There were no new AEs drug-related reported from Day 85 through Day 392, 48 weeks after the last JNJ-3989 dose. A single AE of possibly related abnormal liver function test (peak ALT 136 U/L) was reported. There were no additional grade 3 or 4 laboratory abnormalities during the treatment phase.

Three non-drug related SAEs were reported: anxiety with depression in a single patient and menorrhagia, each requiring hospitalisation. All SAEs were resolved.

*All patients in cohort 8 were HBeAg positive and NA-experienced at baseline. †All patients in cohort 9 were HBeAg positive and NA-naïve at baseline. AE = adverse event; SAE, serious adverse event
AROHBV1001: Conclusions

For the first time in patients with CHB, siRNA therapy resulted in sustained, off-treatment $\geq 1\log_{10}$ IU/mL reductions in HBsAg through to 48 weeks after the last JNJ-3989 dose.

- Reductions in HBV RNA, HBeAg, HBcrAg were more pronounced in HBsAg sustained responders than non-responders.
- Three injections of JNJ-3989 (Q4w) were well tolerated at doses up to 400 mg and appeared to have a good long-term safety profile.

- These results support the evaluation of longer durations of treatment with JNJ-3989 + NA, with the objective of providing functional cure in patients with CHB.
 - 48-week phase 2b studies of JNJ-3989 + NA, with or without JNJ-6379 (CAM-N) are underway to assess functional cure rates in patients with CHB.

CAM-N = capsid assembly modulator class N (inducing normal empty capsid formation); CHB = chronic hepatitis B; HBcrAg = hepatitis B core-related antigen; HBeAg = hepatitis B e-antigen; HBsAg = hepatitis B surface antigen; HBV = hepatitis B virus; NA = nucleos(t)ide analogue; Q4w = every 4 weeks.
We express our gratitude to the patients who participated in this study. The authors also thank other Arrowhead staff members for their contributions to this study. This study was sponsored by Arrowhead Pharmaceuticals, Inc. Medical writing support for the development of this oral presentation was provided by Eleanor Coppins (Zoetic Science) Ashfield companies, part of UDG Healthcare plc, and was funded by Janssen Pharmaceuticals.