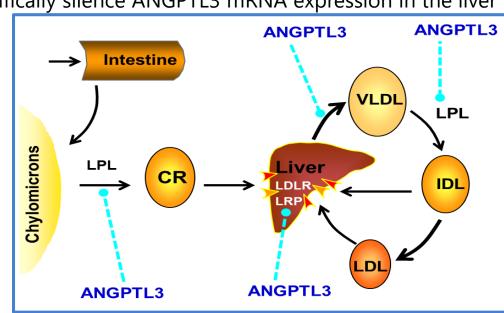
Pharmacodynamic effect of ARO-ANG3, an investigational RNA interference therapeutic targeting hepatic angiopoietin-like protein 3, in patients with dyslipidemia

GF Watts¹, C Schwabe², R Scott³, P Gladding⁴, D Sullivan⁵, J Baker⁶, P Clifton⁷, J Hamilton⁸, B Given⁸, J San Martin⁸, S Melquist⁸, T Chang⁸, N Rajicic⁸, I Goldberg⁹, D Gaudet¹⁰, JW Knowles¹¹, RA Hegele¹², C Ballantyne¹³


University of Western Australia, Perth, Australia; ²Auckland Clinical Studies, Auckland, New Zealand; ³Lipid and Diabetes Research, Christchurch 8011, New Zealand; ⁴Waitemata District Health Board, Auckland, New Zealand; ⁵Royal Prince Alfred Hospital, Sydney, Australia; 6Middlemore Hospital, Auckland, New Zealand; 7Royal Adelaide Hospital, Adelaide, Australia; 8Arrowhead Pharmaceuticals, Inc., Pasadena, United States; 9NYU School of Medicine, NYU Langone Health, New York City, United States; 10Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, Canada; 11 Stanford Division of Cardiovascular Medicine, Houston, United States; 12 University of Western Ontario, London, Canada; 13 Baylor College of Medicine, Houston, United

INTRODUCTION

Clinicaltrials.gov identifier:

Dyslipidemia is a major risk factor for cardiovascular disease (CVD), and **residual risk of CVD** persists even with current standard of care (including PCSK9 inhibitors)

- ANGPTL3 is a key regulator of lipid and lipoprotein metabolism with multiple potential nodes of action, including inhibition of Lipoprotein Lipase (LPL) and Endothelial Lipase (EL) (see figure below)
- Loss-of-function mutations in *ANGPTL3* lead to enhanced LPL and EL activity, resulting in:
 - Low TG, LDL-C, VLDL-C, and HDL-C
 - Reduced risk of CVD, and
 - No known adverse phenotype associated with genetic deficiency in ANGPTL3
- **ARO-ANG3** is an investigational synthetic, double-stranded, hepatocyte-targeted RNA interference (RNAi) trigger designed to specifically silence ANGPTL3 mRNA expression in the liver
- AROANG1001 is a phase 1 study designed to evaluate the safety, tolerability and pharmacodynamic effects of ARO-ANG3 on healthy volunteers and patients with dyslipidemia

STUDY ENDPOINTS

Safety (Primary):

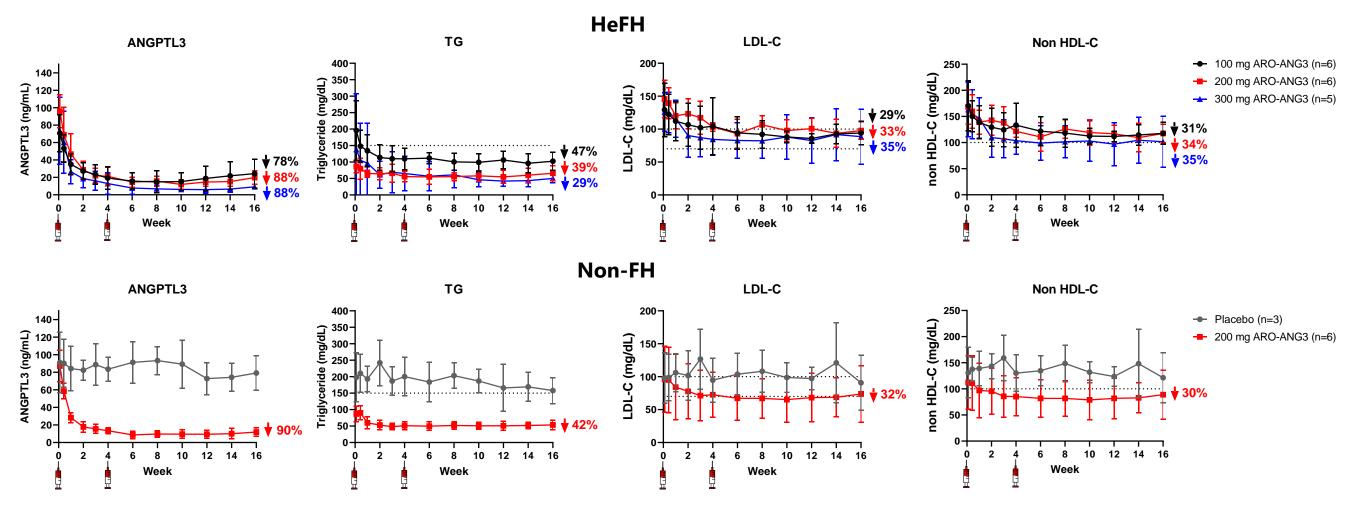
• Incidence and frequency of adverse event

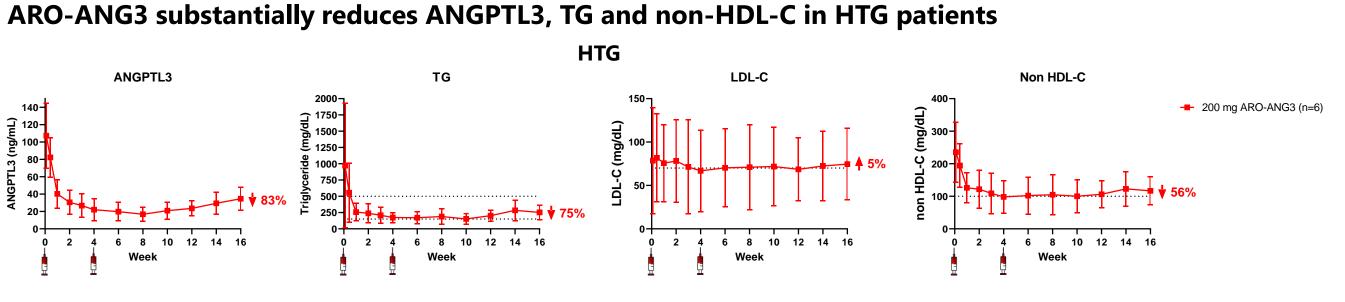
Key Pharmacodynamic and Lipid Parameters:

- Change from baseline over time in ANGPTL3
- Change from baseline over time in the following parameters: fasting Triglycerides, LDL-C, non-HDL-C, and HDL-C

Patient Populations

- **HeFH** Heterozygous Familial Hypercholesterolemia (HeFH) patients genetically confirmed or Dutch lipid clinic network score ≥ 6
- Non-FH Patients on stable statin regimen that are not at LDL-C goal (LDL-C > 70 mg/dL)
- HTG Hypertriglyceridemia patients with TG > 300 mg/dL at screening


Baseline characteristics of HeFH, Non-FH and HTG patient cohorts


	HeFH Patients			Non-FH Patients		HTG Patients			
Mean (range) Fasting values	100 mg ARO- ANG3 (n=6)	200 mg ARO- ANG3 (n=6)	300 mg ARO- ANG3 (n = 5)	200 mg ARO- ANG3 (n=6)	Placebo (n=3)	200 mg ARO- ANG3 (n=6)			
Age (years)	43.5 (19-61)	49.3 (25-65)	45.2 (20-70)	51.7 (31-62)	58.7 (51-63)	62.8 (51-69)			
Male (%)	50	50	60	83	67	67			
BMI (kg/m²)	29.9 (25.1-35.0)	28.0 (21.0-36.9)	25.6 (19.4-29.8)	26.8 (21.5-36.4)	28.8 (28.0-29.5)	31.2 (27.8-36.9)			
ANGPTL3 (ng/mL)	71 (45-91)	96 (76-127)	74 (36-134)	87 (59-112)	91 (69-131)	107 (68-161)			
Triglycerides (mg/dL)	196 (94-360)	86 (66-118)	138 (38-441)	87 (68-130)	198 (121-271)	973 (189-2743)			
LDL-C (mg/dL) (direct assay)	129 (95-191)	146 (91-171)	126 (96-174)	96 (68-198)	98 (56-132)	79 (13-179)			
Non-HDL-C (mg/dL)	171 (121-229)	168 (109-207)	163 (105-230)	112 (84-217)	131 (83-180)	236 (141-385)			
HDL-C (mg/dL)	45 (32-59)	60 (46-86)	44 (30-57)	43 (34-53)	57 (54-61)	37 (10-75)			
ApoB (mg/dL)	132 (88-202)	106 (73-138)	100 (75-135)	78 (64-133)	87 (60-124)	106 (71-149)			

Phase 1 Study to evaluate the effect of ARO-ANG3 in patients with dyslipidemia NCT03747224 Repeat Dose (Day 1 and Day 29) Single Dose Heterozygous **Triglycerides NAFLD Patients** Familial **Population** on Stable Statin (Liver Fat ≥ 10%) ≥ 300 mg/dL Hypercholesterolemia (Non-FH) Open-Open-_ Randomized Randomized [Unblinded to [Unblinded to label [Unblinded to 6 active, 4 PBO 100 mg Cohort 2 00 mg Cohort 2b: 4 active 6 active, 4 PBC 200 mg Cohort 3 00 mg Cohort 200 mg Cohort 3 6 active, 4 PBC 4 active 300 mg Cohort 4 00 mg Cohort 4b 4 active

Data cutoff: 30 Apr 2020 **RESULTS**

ARO-ANG3 substantially reduces ANGPTL3, TG, LDL-C and non-HDL-C in HeFH and non-FH patients

Mean values +/- SD are plotted for each cohort; % values are maximum mean reductions for each cohort (n>1 subject at a visit date)

RESULTS

Summary of interim safety data

	HeFH	Non-FH		HTG	
TEAEs Reported in > 2 subjects, AE Term (MedDRA Preferred Term)	All Doses n = 17	200 mg Active n=6	Placebo n=3	200 mg n=6	Total Active n = 29
Headache	4 (23.5%)	0	1 (33%)	1 (17%)	5 (17%)
Contusion	4 (23.5%)	0	0	0	4 (14%)
Oropharyngeal pain	3 (18%)	0	0	1 (17%)	4 (14%)
Vascular access site bruising/hematoma	2 (12%)	1 (17%)	0	1 (17%)	4 (14%)
Injection site erythema, bruising, pain, swelling	3 (18%)	0	1 (33%)	0	3 (10%)
Dizziness	2 (12%)	1 (17%)	1 (33%)	0	3 (10%)
Muscle spasm	1 (6%)	0	0	2 (33%)	3 (10%)
Presyncope, Syncope	3 (18%)	0	0	0	3 (10%)
Upper respiratory tract infection, Respiratory tract infection	1 (6%)	2 (33%)	1 (33%)	0	3 (10%)

pharmaceuticals

NATIONAL LIPID

ASSOCIATION

- Two subjects reported SAEs (1 case of ketosis related to dapaglifozin and dehydration, 1 case of syncope with fibula fracture), both cases not related to ARO-ANG3.
- Two AEs of ALT elevation were reported. One case was asymptomatic (baseline 34 U/L, peak 91 U/L). The other (baseline 30 U/L, peak 238 U/L Day 29, 68 U/L Day 43 and 34 U/L at Day 113/EOS) was transient and associated with gastroenteritis. Neither associated with clinically significant elevations in total bilirubin.
- No clinically significant adverse changes in platelets
- No drug discontinuations
- Contusion AEs (n=4)
 - •2 events related to mechanical fall
 - •1 event related to NSAID treatment

CONCLUSIONS

- ARO-ANG3, an investigational RNAi therapeutic targeting ANGPTL3 mRNA transcripts results in sustained favorable lipid changes
- ARO-ANG3 maintained reductions in these lipid parameters for >12 weeks post second dose, regardless of patient population
- ARO-ANG3 had a **favorable safety and tolerability** profile
- ARO-ANG3 produces a substantial and prolonged reduction of LDL-C, non-HDL-C and TGs, and may prove useful as a therapeutic option in patients with dyslipidemia

ACKNOWLEDGEMENTS

The study sponsors would like to acknowledge the help and participation of all patients who agreed to take part in this study, as well as the work and dedication of the staff at the clinical sites.