Discovery and Development of Arrowhead Clinical Candidates ARO-AAT and ARO-HBV

Zhen Li, PhD,
Senior Vice President, Chemistry and Non-Clinical
International Drug Discovery Science and Technology – Jinan, China
Nov. 6, 2018
Forward-looking Statements and Disclosures

- This presentation contains forward-looking statements within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995. These statements are based upon our current expectations and speak only as of the date hereof. Our actual results may differ materially and adversely from those expressed in any forward-looking statements as a result of various factors and uncertainties, including, without limitation, the safety and efficacy of our product candidates, the duration and impact of regulatory delays in our clinical programs, our ability to finance operations, the timing for starting and completing clinical trials, rapid technological change in our markets, and the enforcement of our intellectual property rights. Our Annual Report on Form 10-K, recent and forthcoming Quarterly Reports on Form 10-Q, recent Current Reports on Forms 8-K, and other SEC filings discuss some of the important risk factors that may affect our ability to achieve the anticipated results, as well as our business, results of operations and financial condition. Readers are cautioned not to place undue reliance on these forward-looking statements. Additionally, Arrowhead disclaims any intent to update these forward-looking statements to reflect subsequent developments.

- I am an employee and shareholder of Arrowhead Pharmaceuticals, Inc.
Outline

• RNA Interference

• Arrowhead’s Targeted RNAi Molecule (TRiM™) platform for targeting hepatocytes

• Discovery and development of Arrowhead clinical Candidates
 • ARO-AAT
 • ARO-HBV
RNAi Therapeutics – the Promise and Advantages

• Small molecule pharmaceuticals target proteins
 • Enzymes
 • Receptors

• RNAi
 • Cleave mRNA
 • Stop the translation process
 • Block the production of disease causing proteins

• The promise:
 • Treat and cure currently undruggable diseases
 • Genetic disorders, cancer, infectious diseases, cardiovascular diseases, pulmonary diseases

• The advantages over small molecule therapeutics
 • Platform technology
 • Target specific cell type
 • Target specific mRNA
 • Precision medicine
 • Only knockdown the target gene in the target cell type
Target the Gene, Silence the Disease

Therapeutic gene silencing with **RNA interference** is highly precise and efficient
A Long Journey for RNAi: Focused on the Vehicles Not Payloads

• Treated distinctly as two separate components: vehicles and payload
• The focus was on delivery vehicles for years in academia and industry
• The vehicles
 • Provided shielding for siRNA as in polymers and LNPs
 • Enabled rapid endosome escape as in polymers, LNP and DPC
• Lessons learned
 • Limited delivery
 • Mainly to the liver and some local deliveries
 • Observed toxicity from some delivery vehicles
Arrowhead RNAi Platform: TRiM™

Simplicity, Specificity, and Activity

TRiM™ has rules and algorithms to optimize trigger sequence

- Limit cross reactivity with off target genes
- Maximize activity
- Maximize innate stability
- Rational use and placement of modifying chemistries
- RNAi chemistry insights and expertise have allowed us to see what others have not

Targeted RNAi Molecule

TRiM™ platform
Direct Conjugation for Hepatocyte Delivery

- Asialoglycoprotein receptor (ASGP-R)
 - Tridentate receptor, overly expressed on the surface of hepatic cells, but minimally on extra-hepatic cells
 - Recycled every 15 mins

- Natural ligand to ASGP-R
 - N-Acetyl-Galactosamine (NAG)

- Binding of NAG to ASGP-R initiates endocytosis

Huang etc.
Bioconjugation, 2016
Chemical Modifications

- Chemical modifications to increase stability
 - Potentially fully modified at 2’ positions (e.g., -F and –OMe)
 - Use of multiple phosphorothioates, instead of phosphates, including at terminal positions to increase nuclease resistance
Hepatic siRNA Discovery/Development

- **Key Design Elements in Hepatic Platform**
 - Subcutaneous dosing, monthly or less dosing frequency
 - Stable and potent sequences
 - No need for the use of endosome escape moieties
 - Expectation of wide therapeutic index

- Uncover new triggers

- Rational design of chemical modifications to improve
 - Stability in endosome and cytoplasm
 - Potency

- Targeting moiety investigation:
 - NAG cluster
 - Linker chemistry
 - Overall ligand design
 - Topology

Two challenges: RNAi CHEMISTRY and DELIVERY

International Drug Discovery Science and Technology - Nov. 6, 2018, Jinan, China
ARO-AAT
Alpha-1 Antitrypsin Deficiency (AATD)

- AAT is an abundant serum protein
 - Primarily synthesized in the liver, about 10% made extrahepatically
- Physiological function includes:
 - Inhibition of neutrophil proteases to protect host tissues during inflammation
 - Especially important in the lung
- Mutation in AAT gene (Z-AAT) leads to mis-folding of the protein and poor export from hepatocytes: low levels in circulation and accumulation in liver
Alpha-1 Antitrypsin Deficiency

Normal AAT

- Normal blood levels of normal protein protect lungs
- Normal secretion into the blood

Abnormal AAT (Z-AAT)

- Low blood levels of abnormal protein leaves lung susceptible to damage from inflammation caused by inhaled irritants or infection
- High accumulation of misfolded Alpha-1 Antitrypsin protein leads to liver injury

No current treatment

Treated with AAT protein replacement therapy today
ARO-AAT: Mechanism of Action

- ARO-AAT designed to stop Z-AAT production by silencing AAT gene via cleavage of mRNA to
 - Prevent production and accumulation of disease-causing protein in liver
 - Prevent repeated cycles of cellular damage
 - Allow clearance of accumulated protein
 - Reverse fibrosis associated with prior damage

ARO-AAT

- **Z-AAT mRNA expression**
- **Z-AAT polymerization**
- **Liver damage**
- **Liver fibrosis and HCC**

AATD is a large scale orphan disease

- Alpha-1 Foundation estimates 100,000+ in the US
- Approximately 100,000+ in Europe
Lead Optimization Leads to ARO-AAT

- 91% serum AAT knockdown achieved with one 2 mpk dose
- Knockdown sustained for 3 weeks with one 2 mpk dose

RNAi triggers in mouse study
- 2 mpk AAT_trigger_3.1
- 2 mpk AAT_trigger_3.2
- 2 mpk AAT_trigger_3.3
- 2 mpk AAT_trigger_3.4

Chemical modifications led to deep reduction of AAT protein and long duration at dose of 2mg/kg

91.2% KD
ARO-AAT Provides Durable AAT knockdown in NHP
Multi-dose in NHP, dosed subcutaneously

- 92% maximum serum AAT knockdown achieved in cynomolgus monkeys
- Knockdown sustained for 7+ weeks following second dose

- Completed GLP toxicology study
- No dose limiting toxicities were identified

Durable knockdown supports once monthly or less frequent dosing
ARO-AAT Biodistribution 3mpk SubQ Administration

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Liver</th>
<th>Kidney</th>
<th>Lung</th>
<th>Brain</th>
<th>Heart</th>
<th>Spleen</th>
<th>Adrenal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.9</td>
<td>1.8</td>
<td>0.3</td>
<td>0.1*</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
</tr>
<tr>
<td>4</td>
<td>44.4</td>
<td>5.1</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
</tr>
<tr>
<td>48 (Day 2)</td>
<td>23.7</td>
<td>2.9</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
</tr>
<tr>
<td>96 (Day 4)</td>
<td>16.8</td>
<td>3.5</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
</tr>
<tr>
<td>192 (Day 8)</td>
<td>6.4</td>
<td>1.2</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
</tr>
<tr>
<td>384 (Day 16)</td>
<td>1.4</td>
<td>0.5</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
<td>BLQ</td>
</tr>
</tbody>
</table>

Only one rat showed quantifiable concentration other two were below limit of quantitation (BLQ).
ARO-AAT Clinical Data Shows Platform Profile

- Open Label AAT Plasma Data: Single Dose, Healthy Volunteers

- **Potency, efficacy, durability**
 - 93%: Maximum Serum AAT reduction achieved 6-weeks following a single dose
 - 87%: Mean maximum serum AAT reduction achieved 6-weeks following a single dose

- **Safety**
 - No Severe AEs
 - Most AEs reported as mild (one moderate gastroenteritis)
 - Mild injection site AEs occasionally reported
 - No clinically meaningful adverse changes in BUN, creatinine, ALT, AST or total bilirubin or pattern of adverse laboratory changes seen
Chronic hepatitis B (CHB): Disease pathogenesis

2 billion infected with HBV ➔ 250 million living with chronic HBV infection

1. Direct antiviral agents = Nucleos(t)ide Analogues (NA’s: TDF, ETV, ADV, LAM)
2. Immune modulators (Pegylated IFNa)

Therapeutic Virus suppression

Liver Cancer
Develops in 15-25% CHB cases

30-50 years

Neither preventative vaccination nor viral suppression influence CHB cure

Primary prevention

1. Vaccination (EngerixB)
Small Molecule Drugs vs RNAi Therapeutics

1. “HBsAg Theory”
 - Reducing HBsAg enables host immune system de-repression and long term control of virus

2. Destabilizing Viral Function
 - Silencing all antigens could destabilize normal viral function
 - Enable host immune system de-repression and long term control of virus

Silence Entire HBV Genome

Potencial to enable a functional cure
Importance of Integrated DNA as mRNA Source has Changed RNAi Strategy

- All HBV transcripts, including pregenomic RNA, overlap and terminate with the same polyadenylation signal
- A single siRNA targeting this common region can reduce all HBV transcripts derived from cccDNA

Single siRNA can reduce all mRNA from cccDNA but can miss integrated-derived mRNA
We Modeled Integration in a New, Mutated pHBV Transfected Mouse

HBsAg knockdown is deep and prolonged despite loss of x trigger site
Multiple Dosing in Intact pHBV Mice Reduces HBsAg Below Level of Quantitation

Study Day

HBsAg in serum (normalized to pre-dose)

Saline

4 mg/kg ARO-HBV (Days 1, 22 and 43)

Multiple animals with HBsAg BLOQ

>3 log₁₀ reduction after 3 doses

International Drug Discovery Science and Technology - Nov. 6, 2018, Jinan, China
With Deep Knockdown also Observed for HBeAg and HBV DNA

HBeAg in serum (normalized to pre-dose)

- **4 mg/kg HBV triggers (Days 1, 22 and 43)**
- **Saline**

3.44 \(\log_{10} \) = >99.9% reduction

HBV DNA in serum (normalized to pre-dose)

- **4 mg/kg HBV triggers (Days 1, 22 and 43)**
- **Saline**

2.2 \(\log_{10} \) = 99.4% reduction to LLOQ
ARO-HBV Safety Evaluation

- GLP toxicology studies completed
 - ARO-HBV is well tolerated
- Significant therapeutic index achieved
Summary

• Arrowhead TRiM™ platform demonstrates consistent activity
• Subcutaneous dosing, monthly or less frequent
• No need for active endosomal escape agent
• Powerful HBsAg reduction for ARO-HBV
• Powerful AAT reduction for ARO-AAT
• Wide therapeutic index
• Good early signs of activity and safety in human subjects

Evolution from biologic complexity to small molecule precision and execution
Acknowledgement

• Rui Zhu, Casi Schienebeck, Gary Christensen, Lucas Trilling, Zach Trilling, Jeff Casper, Collin Hagen, Tao Pei, Fred Fleitz, Jacob Griffin, Jing Chen, Steven Knoll,
• Chris Wooddell, Holly Hamilton, Heather Sternard, Aaron Andersen, Meredith Hinkes, Qili Chu, Jeremy Briggs, Stephanie Bertin,
• Julia Hegge, Sheryl Ferger, Linda Goth, Tracie Milarch, Rachael Schmidt, Leah Staley
• Mark Seefeld, Beth Mock, Josh Schumacher, Vladimir Subboti
• Bruce Given, Dawn Christianson, Thomas Schluep, James Hamilton,