

A PHASE 3 STUDY TO ASSESS THE EFFICACY
AND SAFETY OF PLOZASIRAN IN ADULTS
WITH GENETICALLY OR CLINICALLY-DEFINED
FAMILIAL CHYLOMICRONEMIA SYNDROME AT
HIGH RISK OF ACUTE PANCREATITIS

Gerald F Watts: University of Western Australia

AUTHORS AND FINANCIAL DISCLOSURE

GF Watts reports grants and/or honoraria from Amgen, Novartis, Arrowhead, Esperion, Astra Zeneca, Pfizer, Novo Nordisk, Silence Therapeutics, CSL Seqirus, and Sanofi-Regeneron.

¹Gerald F. Watts, D.Sc., M.D., Ph.D., ²Robert S. Rosenson, M.D., ³Robert A. Hegele, M.D., ⁴Ira J. Goldberg, M.D., ⁵Antonio Gallo, M.D., Ph. D., ⁶Ann Mertens, M.D., Ph.D., ⁷Alexis Baass, M.D., M.Sc., ⁸Rong Zhou, Ph.D., ⁸Ma'an Muhsin, M.D., ⁸Jennifer Hellawell, M.D., ⁹Nicholas J. Leeper, M.D., ¹⁰Daniel Gaudet, M.D., Ph.D., on behalf of the PALISADE Study Group*

Affiliations

¹School of Medicine, University of Western Australia and Department of Cardiology, Royal Perth Hospital, Perth, Australia (G.F.W.); ²Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mt Sinai, Mount Sinai, New York, NY, USA (R.S.R.); ³Robarts Research Institute, London, Ontario, Canada (R.A.H.); ⁴NYU School of Medicine, NYU Langone Health, New York City, NY, USA (I.J.G); ⁵Sorbonne University, INSERM UMR1166, Lipidology and cardiovascular prevention Unit, Department of Nutrition, Pitie-Salpetriere Hospital, AP-HP, Paris, France (A.G.); ⁵Department of Endocrinology, University Hospitals Leuven – KU Leuven, Leuven, Belgium (A.M.); ¹Department of Medicine, McGill University and Genetic Dyslipidemia Clinic, Montréal Clinical Research Institute (IRCM), Montréal, Québec, Canada (A.B.); ³Arrowhead Pharmaceuticals, Pasadena, CA, USA (R.Z., M.M, J.H.); ¹Stanford University, Palo Alto, CA, USA (N.J.L.); ¹Ouniversité de Montréal and ECOGENE-21, Montréal, Québec, Canada (D.G),

PERSISTENT CHYLOMICRONEMIA

- Is reflected by extremely high plasma triglycerides (>880 mg/dL) caused by impaired circulatory clearance of chylomicrons containing TGs derived from the diet¹
- Due to ultrarare bi-allelic recessive variants of lipoprotein lipase (LPL; Familial Chylomicronemia Syndrome, FCS) or more common genetic variants (Multifactorial Chylomicronemia Syndrome) that impair triglyceride lipolysis¹⁻⁴
 - Adults with extreme chylomicronemia can phenocopy classical FCS
- Chylomicronemia causes multiple symptoms (physical, cognitive, emotional), the most severe being acute pancreatitis and its life-threatening sequelae⁵⁻⁸
 - Directly related to triglyceride levels (>500 mg/dL)
- Current therapeutic agents (fibrates, n-3 fatty acids, statins, niacin) are generally ineffective

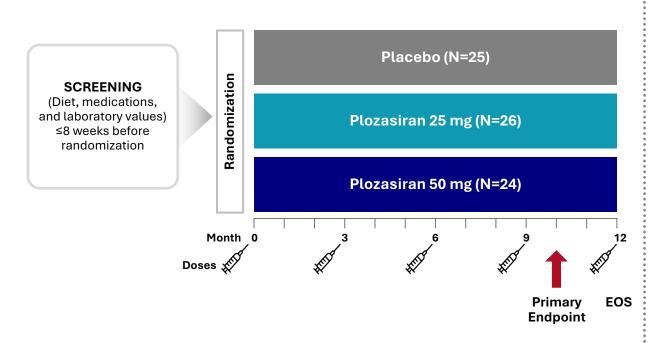
PLOZASIRAN: AN INVESTIGATIONAL SIRNA THERAPEUTIC TARGETING APOC3, A KEY REGULATOR OF TG AND TRL METABOLISM

CHYLOMICRONEMIA^{1,2} PLOZASIRAN² Chylomicron Chylomicron Hepatocyte Hepatocyte **VLDL VLDL** TRL TRL LPL Dependent LPL Independent LPL Independent **LPL** Dependent Plozasiran APOC3 APOC3 APOC: **TRL-Remnants** TRL-Remnants

APOC3, apolipoprotein C3; HL, hepatic lipase; LPL, lipoprotein lipase; TG, triglycerides; TRL, triglyceride rich lipoproteins; VLDL, very low-density lipoprotein. 1. Van Zwol W et al. J Clin Med. 2019; 8:1085. 2. Ballantyne CM, et al. New Engl J Med. 2024; Published online: May 28, 2024. DOI: 10.1056/NEJMoa2404143.

APOC3 inhibits LPL and delays clearance of TRL-remnants by

preventing uptake by liver receptors, increasing plasma TGs



Silencing APOC3 enhances TG lipolysis and TRL-remnant

clearance by hepatic receptors, reducing plasma TGs

PALISADE: RANDOMIZED PLACEBO-CONTROLLED PHASE 3 STUDY OF PLOZASIRAN IN PATIENTS WITH FCS

Primary Endpoint:

 Placebo-adjusted median percent change in triglycerides at Month 10

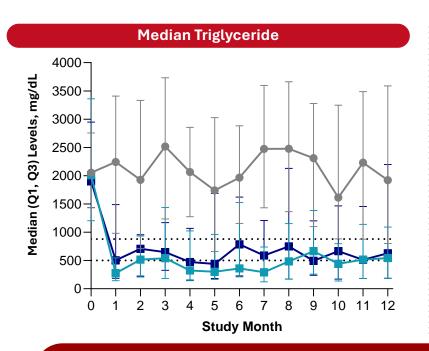
Multiplicity-controlled key secondary endpoints:

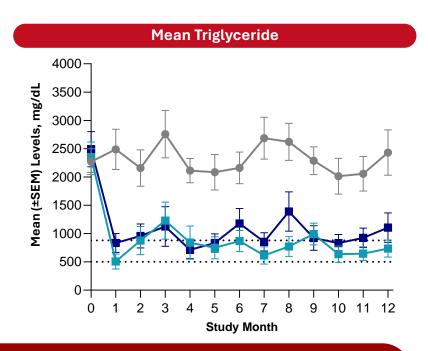
- Percent change from baseline at Months 10 and 12 (averaged) in fasting triglycerides
- 2. Percent change from baseline at Month 10 in fasting APOC3
- 3. Percent change from baseline at Month 12 in fasting APOC3
- 4. Incidence of positively adjudicated events of acute pancreatitis during the randomized period

PALISADE ENROLLED PATIENTS WITH FCS DEFINED CLINICALLY OR GENETICALLY CONFIRMED

- Criteria included history of multiple TG measurements above 1000 mg/dL, despite best standard of care; plus at least one of the following:
 - 1. Prior genetic testing diagnostic of FCS* OR
 - 2. Recurrent episodes of acute pancreatitis[§] OR
 - Recurrent hospitalizations for severe abdominal pain without other explainable cause OR
 - 4. History of childhood pancreatitis OR
 - 5. Family history of HTG-induced acute pancreatitis

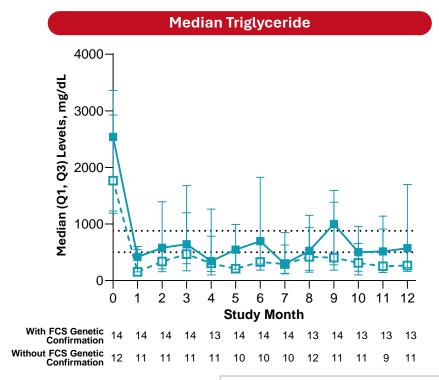
Genetic testing was done on all patients not previously tested for FCS variants

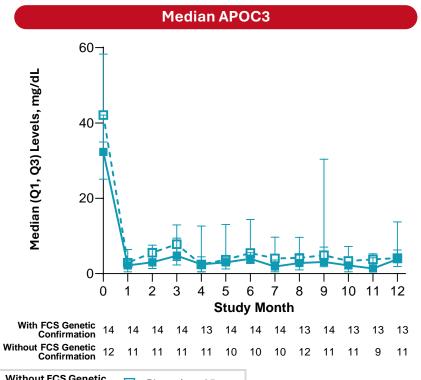

PALISADE BASELINE CHARACTERISTICS



		Plozasiran		
Characteristic	Pooled Placebo (N=25)	25 mg (N=26)	50 mg (N=24)	
Mean (SD) age, years	47 (14)	48 (14)	43 (11)	
Female, n (%)	11 (44)	14 (54)	13 (54)	
Male, n (%)	14 (56)	12 (46)	11 (46)	
White, n (%)	19 (76)	19 (73)	17 (71)	
Mean (SD) BMI, kg/m ²	25 (4)	26 (4)	25 (5)	
Median (Q1, Q3) APOC3, mg/dL	39 (29, 50)	39 (27, 44)	30 (18, 37)	
Mean (SD) APOC3, mg/dL	40 (18)	39 (17)	33 (20)	
Median (Q1, Q3) triglyceride, mg/dL	2053 (1435, 2755)	2008 (1204, 3361)	1902 (1434, 2948)	
Mean (SD) triglyceride, mg/dL	2272 (1141)	2350 (1375)	2492 (1523)	
Receiving statins n (%)	11 (44)	11 (42)	12 (50)	
Fibrates, n (%)	16 (64)	19 (73)	15 (63)	
Omega-3 fatty acids, n (%)	6 (24)	9 (35)	7 (29)	
Diabetes or pre-diabetes, n (%)	11 (44)	10 (39)	7 (29)	
Genetic confirmation of FCS, n (%)	14 (56)	14 (54)	16 (67)	
Previous episode of pancreatitis, n (%)	22 (88)	23 (89)	22 (92)	

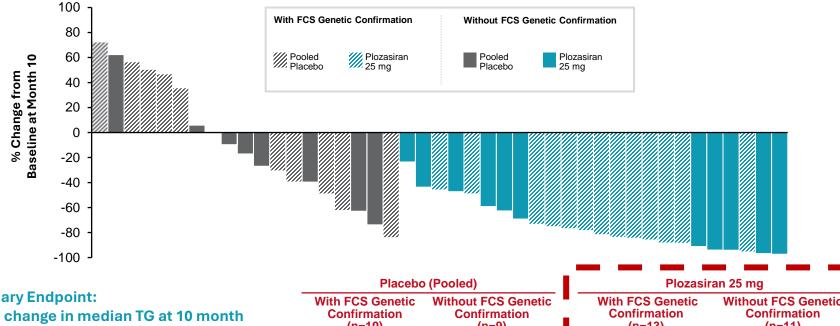
PLOZASIRAN TG RESPONSE AT 1 MONTH PERSISTED BELOW THRESHOLDS FOR RISK OF PANCREATITIS OVER 12 MONTHS





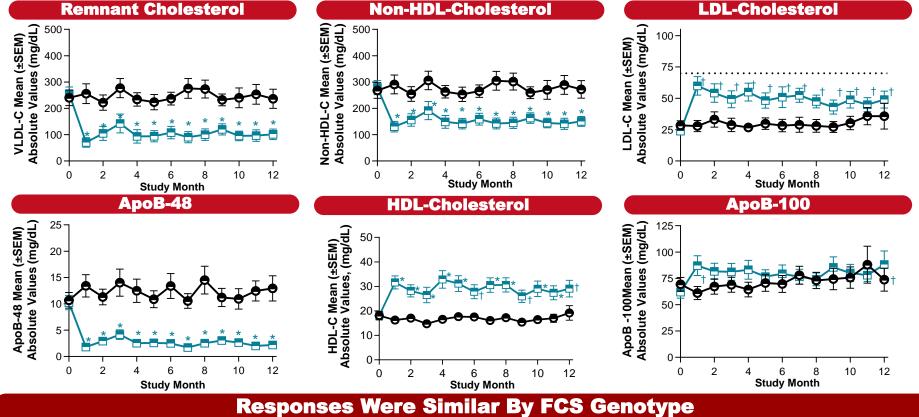
75% of patients reached triglycerides < 880 mg/dL and 50% reached < 500 mg/dL at 10 months

PLOZASIRAN TG AND APOC3 RESPONSES PERSISTED OVER 12 MONTHS WITH NO SIGNIFICANT DIFFERENCE BY FCS GENOTYPE



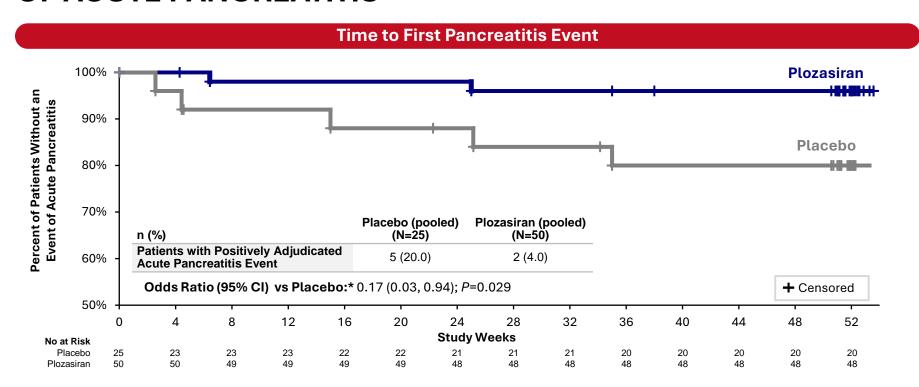
With FCS Genetic Confirmation Plozasiran 25 mg Without FCS Genetic Confirmation Plozasiran 25 mg

REDUCTIONS IN TG AND % OF PATIENTS ATTAINING TG BELOW RISK THRESHOLDS FOR PANCREATITIS BY FCS GENOTYPE



Primary Endpoint: 80 % change in median TG at 10 month	With FCS Genetic Confirmation (n=10)	Without FCS Genetic Confirmation (n=9)	With FCS Genetic Confirmation (n=13)	Without FCS Genetic Confirmation (n=11)
Patients attaining triglycerides < 500 mg/dL at month 10	1 (10%)	0 (0)	6 (46%)	6 (55%)
Patients attaining triglycerides < 880 mg/dL at month 10	1 (10%)	3 (33%)	10 (77%)	8 (73%)
Patients attaining triglycerides < 1000 mg/dL at month 10	1 (10%)	5 (56%)	11 (85%)	9 (82%)

PLOZASIRAN LOWERED TG-RICH LIPOPROTEINS AND INCREASED LDL-CHOLESTEROL AND HDL-CHOLESTEROL LEVELS



PLOZASIRAN SIGNIFICANTLY REDUCED THE INCIDENCE OF ACUTE PANCREATITIS[†]

^{*}Odds ratio, 95% CI, and P-value were based on CMH test stratified by baseline TG category. 7 incident cases occurred in 5 of 25 (20%) participants receiving placebo and 2 incident cases occurred in 2 of 50 (4%) participants in the plozasiran-treated group. †4 patients with AP events were FCS genotype negative

SUMMARY OF ADVERSE EVENTS

	Pooled Placebo (N=25)	Plozasiran		
		25 mg (N=26)	50 mg (N=24)	
Patients with Any TEAEs	20	23	20	
Most Common TEAEs, N (%)				
Abdominal pain	5 (20)	7 (27)	6 (25)	
COVID-19 infection*	0 (0)	5 (19)	7 (29)	
Nasopharyngitis	3 (12)	5 (19)	2 (8)	
Headache	2 (8)	3 (12)	5 (21)	
Nausea	2 (8)	4 (15)	3 (13)	
Back pain	2 (8)	3 (12)	2 (8)	
Upper respiratory tract infection	2 (8)	3 (12)	2 (8)	
Diarrhea	2 (8)	1 (4)	4 (17)	
Severe TEAEs	5 (20)	3 (12)	3 (13)	
Serious TEAEs	7 (28)	5 (19)	2 (8)	
Deaths	0 (0)	0 (0)	0 (0)	
Premature discontinuations	6 (24)	3 (12)	2 (8)	
HbA1c, mean (SD)				
Baseline	6.1 (1.33)	5.7 (0.90)	5.59 (1.15)	
Month 12	6.2 (1.17)	5.98 (1.00)	5.83 (1.56)	
Platelet count, 109/liter, mean (SD)				
Baseline	217.9 (80.5)	204.4 (70.4)	192.9 (50.7)	
Mean change from baseline at Month 10	25.9 (38.2)	28.7 (61.2)	-4.4 (48.2)	
Mean change from baseline at Month 12	8.6 (47.5)	-4.3 (40.8)	-8.7 (50.8)	

- A greater proportion of placebo-treated patients experienced SAEs
- Fewer premature discontinuations from blinded therapy with plozasiran
- No reductions in platelet counts
- Hyperglycemia with plozasiran confined to patients with pre-diabetes and diabetes
- No deaths

^{*}The observed difference in COVID-19 occurrence in this trial was not seen in the larger phase 2b trials in mixed hyperlipidemia and severe hypertriglyceridemia also conducted during the COVID-19 pandemic, and likely was a chance finding. HbA1c, glycosylated hemoglobin; SD, standard deviation; SAE, serious adverse event; TEAE, treatment emergent adverse event.

CONCLUSIONS

PALISADE met all alpha-controlled trial endpoints

- Plozasiran (quarterly dosing) significantly reduced acute pancreatitis
- Plozasiran substantially reduced triglycerides in patients with persistent chylomicronemia (FCS or FCS-like syndrome*) and over half achieved TG treatment goals (75% <880 mg/dL, 50% < 500 mg/dL), invariant of FCS genotype
- Reductions in TGs and APOC3 were apparent at 1 month and sustained thereafter over 12 months with comparable efficacy in genetically and clinically-defined patients
- Reductions in atherogenic TRLs and minor increase in LDL-C with no change in ApoB
- Favorable safety and tolerability comparable to placebo
- Plozasiran is a novel therapeutic candidate for reducing plasma TG levels and risk of acute pancreatitis in patients with persistent chylomicronemia

Circulation

Circulation. 2024; [published online ahead of print] DOI: 10.1161/CIRCULATIONAHA.124.072860

Temporal Effects of Plozasiran on Lipids and Lipoproteins in Persistent Chylomicronemia

Gerald F. Watts, DSc, MD, PhD; Robert A. Hegele, MD; Robert S. Rosenson, MD; Ira J. Goldberg, MD; Antonio Gallo, MD, PhD; Ann Mertens, MD, PhD; Alexis Baass, MD, MSc; Rong Zhou, PhD; Ma'an Muhsin, MD; Jennifer Hellawell, MD; Daniel Gaudet, MD, PhD; Nicholas J. Leeper, MD; on behalf of the PALISADE Study Group

Circulation

https://www.ahajournals.org/doi/ 10.1161/CIRCULATIONAHA.124.072860

PALISADE

The study sponsors would like to thank the patients who participated and their families, and all investigators and staff who completed the trial