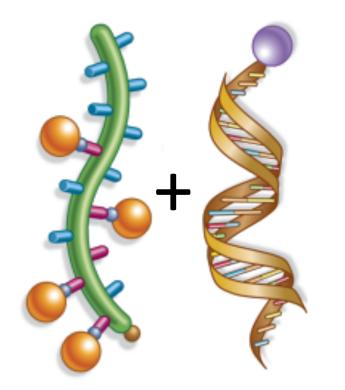
Arrowhead's TRiM™ delivery system – potent, modular and versatile for RNAi

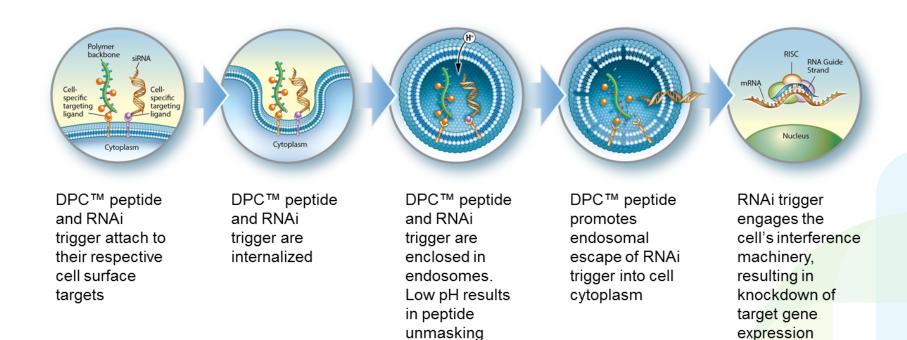
Bruce D. Given, M.D. COO, Arrowhead Pharmaceuticals AsiaTides Feb 2018



Arrowhead Pharmaceuticals

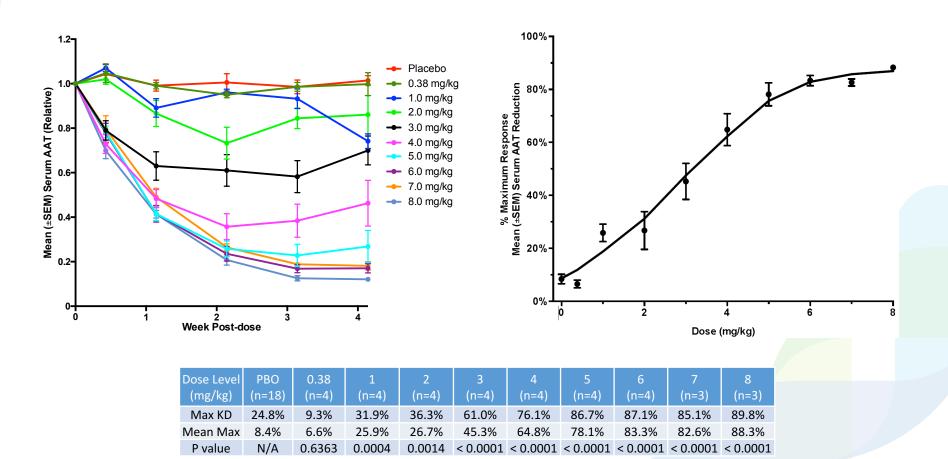
- Company focused on developing siRNA therapeutics
- Working in RNAi for over 15 years
- Exclusively focused in RNAi since 2011
- Worked with multiple delivery systems
 - Polymer nanoparticles
 - Liposomes
 - Dynamic Polyconjugates (DPCs)™
 - NAG targeted conjugates
 - Conjugates targeting extra-hepatic tissues

Dynamic Polyconjugates


DPC (EX-1) and cholesterol-linked RNAi trigger

DPC[™] system consists of:

- Vial 1: DPC Polymer
- Vial 2: liver targeted siRNA
- Mixed in pharmacy and coadministered via IV infusion



Mechanism of DPC[™]-mediated siRNA delivery to cells

ARC-AAT: Phase 1 Healthy Volunteer AAT Levels

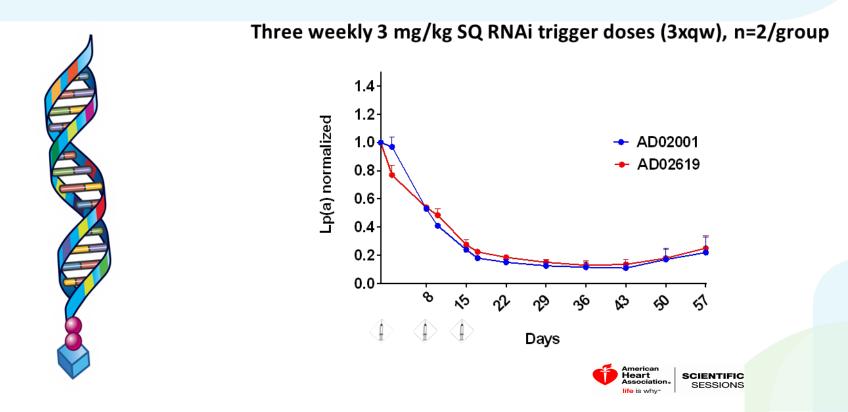
DPCs Found to Produce Toxicity in NHPs

Arrowhead Pharma sinks after shelving three drug programs

Reuters Staff

3 MIN READ

(Reuters) - Shares of Arrowhead Pharmaceuticals Inc sank more than 60 percent in premarket trading on Wednesday, a day after the company said it would stop developing all drugs being tested on humans due to a setback in its drugdelivery technology.



The Painful Learnings

- RNAi happens in the cytoplasm and triggers require extensive modification to get there unaided
 - Early emphasis on delivery platforms
 - Several promising programs lost to delivery-related toxicities
 - Polymer, nanoparticle, LNP etc... delivery systems all have toxicity issues
- Delivery vehicle toxicity eliminated with conjugates
 - Assumes chemistries around ligands, linkers and RNA stabilization don't create new issues
- Does not eliminate typical small molecule drug concerns
 - Off-target toxicity, target/biology risk, idiosyncratic reactions (e.g. DILI), etc.
 - Specific tissue targeting may reduce risk

TRiM[™] Platform Enables Amgen Partnership

Targeting apolipoprotein(a) with a novel RNAi delivery platform as a prophylactic treatment to reduce risk of cardiovascular events in individuals with elevated lipoprotein(a)

Amgen strikes \$674M cardiovascular RNAi pact with Arrowhead

TRiMTM: Simplicity, Specificity, and Activity

arrowhead

Components:

- Stabilization chemistries
- pk enhancers as necessary
- Linker chemistries
- Targeting ligands

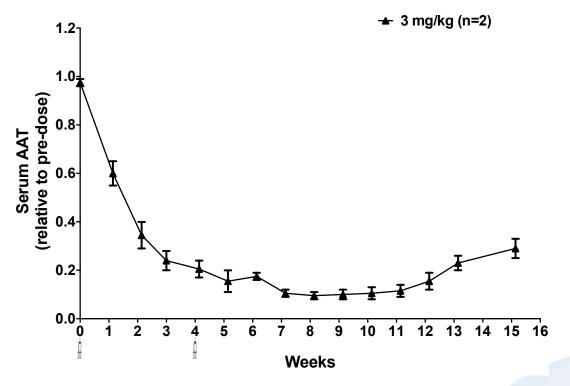
Now capable of achieving deep KD in diverse tissues using subQ, iv, and inhaled administration routes *Without active endosomal escape*

ARO-AAT/ARO-HBV: Key Design Elements Expected for the Next Generation

Check List:

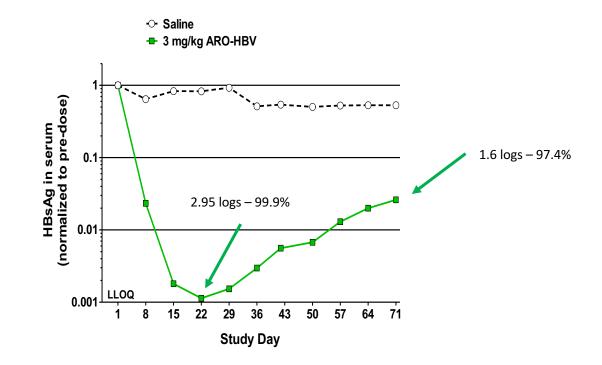
Subcutaneous dosing, monthly or less frequent No need for endosomal escape agent Full suppression of liver AAT production (ARO-AAT) Coverage of full HBV transcriptome (ARO-HBV) Expectation of wide therapeutic index

ARO-AAT/ARO-HBV: Key Design Elements Expected for the Next Generation


Check List:

- ✓ Subcutaneous dosing, monthly or less frequent
- ✓ No need for endosomal escape agent
- ✓ Full suppression of liver AAT production (ARO-AAT)
- ✓ Coverage of full HBV transcriptome (ARO-HBV)
- Expectation of wide therapeutic index

ARO-AAT Provides Durable AAT knockdown: Multi-dose in NHP, dosed subcutaneously


- 92% maximum serum AAT knockdown achieved
- Knockdown sustained for 7+ weeks following second dose

Durable knockdown supports once monthly or less frequent dosing

Integration Modeled in a New, Mutated pHBV Transfected Mouse

HBsAg knockdown is deep and prolonged despite loss of HBx-trigger site

Preliminary Safety Evaluation (non-GLP)

Based on clinical observations, clinical pathology and histopathology evaluations, ARO-HBV and ARO-AAT were well tolerated in repeated dose studies in rats and monkeys administered 3 weekly subcutaneous doses at dose levels of 30, 60, 120, and 300 mg/kg.

Expect wide safety margin

ARO-HBV and ARO-AAT poised to enter the clinic

Dec 22, 2017

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV

Dec 20, 2017

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-AAT

Building Out CV Portfolio Using TRiM[™] platform

Already building candidates for Lp(a) and Gene X with Amgen, Now adding as wholly-owned assets:

ARO-APOC3

- For treatment of hypertriglyceridemia
- Up to 90% KD in TG rodent models (intestines also a source of production)
- SubQ administration
- NHP work and non-GLP tox studies to follow

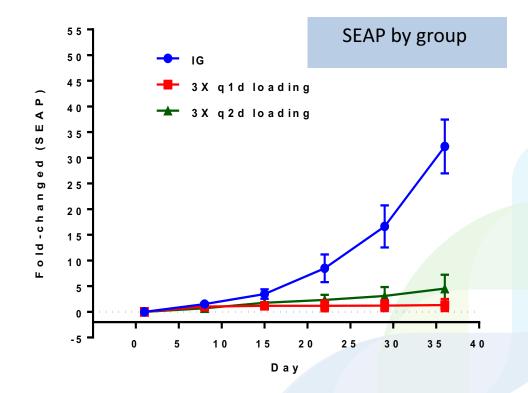
CTA planned in Q4 2018

ARO-ANG3 (against ANGPTL3)

- For treatment of hypertriglyceridemia/dyslipidemia
- >90% KD in rodent models with several good triggers
- SubQ administration
- Still optimizing chemistries
- NHP work and non-GLP tox studies to follow

CTA planned in Q4 2018

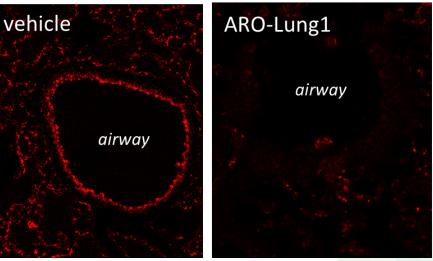
The Next Frontier - Extra-hepatic Delivery


- Why the hepatocyte space is crowded
 - ASGPR receptor is very high density
 - It is a clearance receptor with low stringency and rapid cycling
 - In a organ designed for high clearance
- Reciprocal challenges outside of the liver
 - Receptor density generally lower
 - Receptor stringency often higher
 - Internalization and recycling times differ
 - Cell availability to circulating molecules often less
- Implications Every aspect has to be optimized
 - Need internalizing receptors of sufficient density
 - Highly optimized targeting ligands
 - Highly optimized RNAi triggers

Delivery and Efficacy in Renal Cell Carcinoma Mouse Model using TRiM™

ARO-Hif2

- Up to 85% KD
- iv or sq administration
- Tumor targeting


Targeting Lung Using TRiM[™] Platform

ARO-Lung1

- Almost 90% KD in rodent models
- 30 day duration after single dose
- Inhaled administration
- Large animal studies and disease models underway
- Non-GLP tox studies underway

CTA planned in Q4 2018

Red: lung target protein expression by IHC

Arrowhead Pipeline

Drug	Indication	Pre-clinical	Pre-IND	Phase 1	Pha	se 2 P	hase 3
ARO-AAT	Alpha-1 Antitrypsin Deficiency				FIH planr	ned Q1 2018	3
ARO-HBV	Hepatitis B				FIH planr	ned Q1 2018	3
ARO-APOC3	Hypertriglyceridemia		CTA planned	Q4 2018			
ARO-ANG3	Hypertriglyceridemia		CTA planned	Q4 2018			
ARO-Lung1	Undisclosed		CTA planned	Q4 2018			
ARO-HIF2	Renal Cell Carcinoma		CTA planned	2019			
ARO-F12	Thrombosis/Hereditary Angioedema		Available for	partnerin	g		
ARO-LPA	Cardiovascular Disease		Pa	artnered v	vith Amge	en	
ARO-AMG1	Cardiovascular Disease		Partnered wit	h Amgen			

Conclusions

- Complex delivery systems often bring difficult safety issues in clinical use
- Direct conjugation has shown good performance for achieving RNAi activity in hepatocytes and can be expected to offer safety/tolerability
- With thoughtful target selection and appropriate SAR chemistry work, it is now feasible to move out of the liver and still achieve strong RNAi activity

Thank you !

