
Conclusions

• This study leveraged a novel proteomic platform for biomarker discovery in 
patients with AATD-LD, identified candidate biomarkers reflecting disease 
progression, and demonstrated potential benefit of fazirsiran treatment in 
reducing cellular stress and damage, apoptosis, inflammation and extracellular 
matrix turnover/fibrosis.

• Collectively, these findings provide molecular evidence to support potential 
clinical benefit of fazirsiran in patients with AATD-LD.

• Biomarkers identified in these analyses may have clinical utility but require 
validation in larger studies.

• The study was limited by:
 ¡ the small sample size (n = 16)
 ¡ the lack of comparator data from healthy patients or patients who received 
placebo; future research should generate additional Olink proteomic data 
from these comparator populations.

• Quantitative assays, such as enzyme-linked immunosorbent assays, would 
prove beneficial in validating findings from this study and bridging the gap to 
clinical practice.
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Introduction

• Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease characterized by 
low levels of serum alpha-1 antitrypsin (AAT), which primarily affects the lungs 
and/or liver.1

• Patients with the protease inhibitor (Pi)*ZZ genotype express misfolded AAT 
(Z-AAT), resulting in hepatic Z-AAT aggregates and reduced antiprotease 
activity in the lungs.1,2

• Accumulation of proteotoxic Z-AAT polymers leads to hepatic cell stress, 
inflammation and cell damage, and liver fibrosis with increased extracellular 
matrix turnover.3

• Currently no pharmacological treatments for AATD-associated liver disease 
(AATD-LD) exist.4

 ¡ Fazirsiran is an investigational small interfering RNA undergoing phase 3 
development in patients with AATD-LD (NCT05677971).

• Proteomics data to identify biomarkers relevant for therapeutic targeting and to 
elucidate disease pathophysiology are limited.

Objective

• To detect treatment-responsive protein biomarkers and cellular pathways by 
leveraging a novel proteomic platform for biomarker discovery using serum 
samples from patients with AATD-LD treated with fazirsiran.

Methods

• Olink Explore 3072, a high-throughput dual-antibody-based proteomics 
platform, was utilized for protein biomarker discovery.

• Serum samples were assessed at baseline and at 4, 16, 24, 28 and 48 weeks 
post-treatment initiation from 16 adults with AATD-LD, a Pi*ZZ genotype, and 
biopsy-proven liver fibrosis who participated in AROAAT-2002 (NCT03946449), 
a phase 2, open-label trial of fazirsiran (100 or 200 mg); treatment with 
fazirsiran resulted in > 80% reduction in serum and liver Z-AAT. 5

 ¡ Additional study design information has been previously described.5

• Olink data were integrated with single nucleus RNA-sequencing (Snucseq) 
data to map expressed proteins to potential source cells in the liver and 
improve data interpretability.

 ¡ The Snucseq data consisted of samples from four patients with non-alcoholic 
steatohepatitis (NASH)/metabolic dysfunction-associated steatohepatitis 
(MASH) and two healthy controls.

• A mixed effects model was applied to measure biomarker change from 
baseline over time and a false discovery rate (FDR)-adjusted p-value was used 
to select the top biomarkers (Figure 1).

• Differentially expressed protein (DEP) and pathway analyses were also 
conducted.
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Results

• Integration of the Olink panel with the Snucseq data is shown in Figure 2.
• Fazirsiran treatment resulted in continuous and sustained reductions in DEPs 

in serum through 48 weeks (Figure 3A). 
• DEPs were primarily mapped to hepatocytes, mesenchymal cells, immune cells 

(T cells and macrophages), cholangiocytes and endothelial cells (Figure 3B). 
 ¡ DEPs revealed potential common mechanisms associated with liver fibrosis 
between AATD-LD and other liver diseases, including NASH/MASH and non-
alcoholic fatty liver disease/metabolic dysfunction-associated fatty liver disease.

 ¡ Of the liver mesenchymal cell-enriched proteins, many were components of the 
extracellular matrix associated with hepatic stellate cell activation and liver 
fibrosis (Figure 4).

 ¡ Downregulated proteins that mapped to hepatocytes were associated with cell 
stress and apoptosis.
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Figure 1. Statistical and bioinformatic approaches identified fazirsiran-responsive 
serum protein markers

Figure 5. Ingenuity pathway analysis showed that fazirsiran-induced proteomic 
changes from baseline through 48 weeks were linked to the reduced activity 
of molecular pathways involved in hepatic cell stress and damage, apoptosis, 
inflammation, extracellular matrix turnover and liver fibrosis

Figure 2. Integration of the Olink panel with Snucseq data suggested liver cell sources 
for the circulating biomarkers

Rows in the heatmap correspond to enrichment of transcripts coding for the protein markers included in the Olink panel in respective cell lineages and are 
scaled (z-score transformation indicating high [red] and low [blue] expression).  
aAt study conception, NASH was the accepted term for this disease. Following a multisociety Delphi consensus initiative, this term has been updated to 
MASH.6

Figure 3. (A)a Fazirsiran treatment led to continuous and sustained reductions of 
proteins in the serum; (B)b mapping DEPs to Snucseq data helped to define liver cell 
origin and contribution of distinct liver cell types to the observed serum DEPs

aEach circle represents a protein; the box plots shows the median (thick horizontal line), upper and lower interquartile range (thin horizontal lines) and the 
range (vertical line at each time point) of relative DEP abundance. Baseline samples were collected pre-dose on Day 1.
bRows in the heatmap correspond to enrichment of fazirsiran treatment-responsive proteins in respective cell lineages and are scaled (z-score 
transformation indicating high [red] and low [blue] expression).

Figure 4. Fazirsiran treatment led to significant reductions in circulating protein 
biomarkers mapped to mesenchymal cells and associated with liver fibrosis and damage

*p < 0.05, **p < 0.01, ***p < 0.001. The mean and standard error are plotted for each time point. Baseline samples were collected pre-dose on Day 1. 

*p < 0.001, **p < 0.0001.

• Ingenuity pathway analysis identified molecular pathways that were improved 
by fazirsiran treatment (Figure 5).

 ¡ Reduced levels of proteins linked to hepatocyte and cell death pathways, 
including p38 mitogen-activated protein kinase and immunogenic cell death 
signalling.

 ¡ Decreases in proteins linked to inflammatory response pathways, including 
Th1/2 activation and cytokine expression; dendritic and natural killer cell 
crosstalk; macrophages, fibroblasts and endothelial cells; and rheumatoid 
arthritis-related markers.

 ¡ Reduction in markers associated with liver fibrosis, including moderation of 
hepatic stellate cell activation, retinoids and wound healing.

The Olink panel was integrated with 
Snucseq data to identify potential 
cell sources in the liver

Change from baseline after 
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A mixed effects model was used to 
assess biomarker change from 
baseline at all time points

FDR-adjusted p-values were used 
to filter the top biomarkers 

Targeted filtering approach:
• Identify cell-type selective markers
• Identify markers based on existing 

knowledge/data in the literature

Systemic filtering approach:
• A pathway analysis was performed 

with an over-representation 
analysis to identify the top 113, 
228, 288 and 600 markers
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LPS/IL-1 mediated inhibition of RXR function
Wound healing signalling pathway
Apelin liver signalling pathway
Pathogen induced cytokine storm signalling pathway

*
*
**
*
**
**
*
*

*
*

*

*
*
**

**

**
**

*

*

**

**
**

**

*

*
*

**
*
*
*
**
*
*
*
**
*
**
*
**
*
**
**
**
**
*
**
*
**
**
**
**
**
**
**
*
**
*
**
**
*
**

600288

Number of markers included 
in the pathway analysis 

10

0

−10

−20

−30

Day 1 Wk 4 Wk 16
Time

COL3A1

C
ha

ng
e 

(%
)

Wk 24

***

Wk 28 Wk 48 Day 1 Wk 4 Wk 16
Time

Wk 24 Wk 28 Wk 48

10

0

−10

−20

−30

−40

COL5A1

C
ha

ng
e 

(%
)

***

Day 1 Wk 4 Wk 16
Time

Wk 24 Wk 28 Wk 48Day 1 Wk 4 Wk 16
Time

Wk 24 Wk 28 Wk 48

10

0

−10

−20

−30

−40

ITGBL1

C
ha

ng
e 

(%
)

****
*

10

0

−10

−20

C7

C
ha

ng
e 

(%
)

**

Day 1 Wk 4 Wk 16
Time

Wk 24 Wk 28 Wk 48Day 1 Wk 4 Wk 16
Time

Wk 24 Wk 28 Wk 48

10

0

−10

−20

−30

−40

ADAMTSL2

C
ha

ng
e 

(%
)

******

10

0

−10

−20

−30

−40

−50

THBS2

C
ha

ng
e 

(%
)

******

Day 1 Wk 4 Wk 16
Time

Wk 24 Wk 28 Wk 48Day 1 Wk 4 Wk 16
Time

Wk 24 Wk 28 Wk 48

20

0

−20

−40

−60

−80

KRT18

C
ha

ng
e 

(%
)

****
***

20

0

−20

−40

−60

−80

FABP1

C
ha

ng
e 

(%
)

***
**

*
**

https://tinyurl.com/yn8sewxz 

