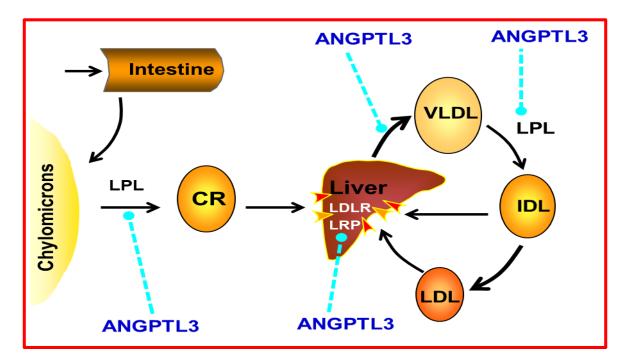
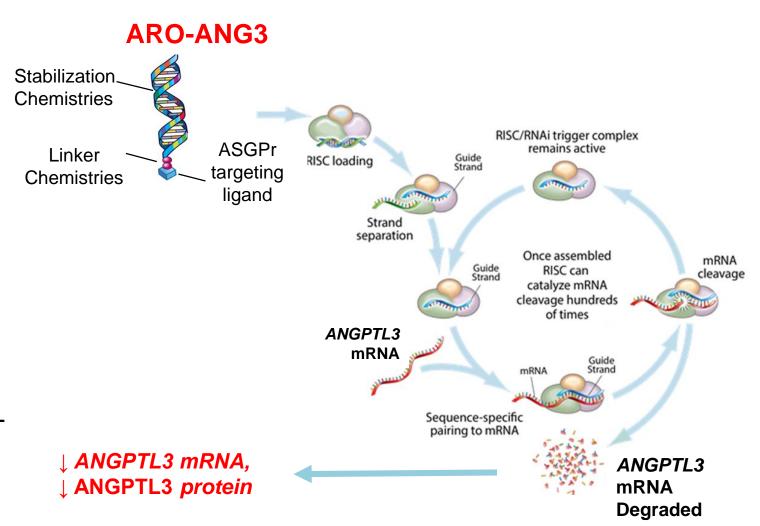
RNAi Inhibition of Angiopoietin-like Protein 3 (ANGPTL3) with ARO-ANG3 Mimics the Lipid and Lipoprotein Profile of Familial Combined Hypolipidemia

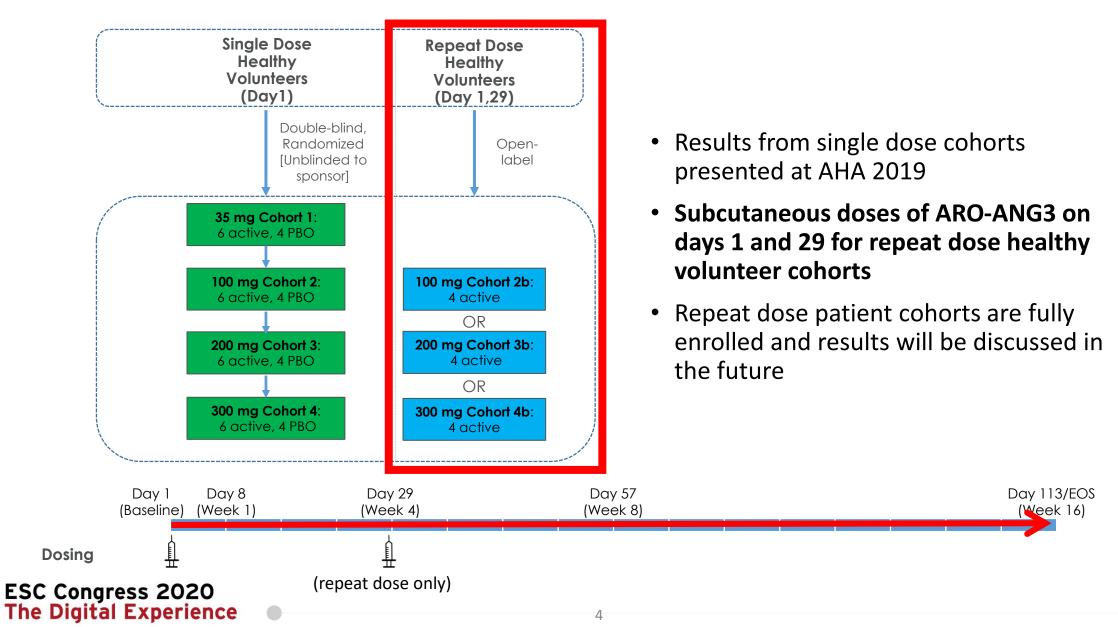

Gerald F Watts,¹ Christian Schwabe,² Russell Scott,³ Patrick Gladding,⁴ David R Sullivan,⁵ John Baker,⁶ Peter Clifton,⁷ James Hamilton,⁸ Bruce Given,⁸ Javier San Martin,⁸ Stacey Melquist,⁸ Josh W Knowles,⁹ Ira Goldberg,¹⁰ Robert A Hegele,¹¹ Christie M Ballantyne,¹² on behalf of the AROANG1001 Study Investigators

¹University of Western Australia, Perth, Australia; ²Auckland Clinical Studies, Auckland, New Zealand; ³Lipid and Diabetes Research, Christchurch Hospital, Christchurch 8011, New Zealand; ⁴Auckland City Hospital, Auckland, New Zealand; ⁵Royal Prince Alfred Hospital, Sydney, Australia; ⁶Middlemore Hospital, Auckland, New Zealand; ⁷Royal Adelaide Hospital, Adelaide, Australia; ⁸Arrowhead Pharmaceuticals, Inc., Pasadena, United States; ⁹Stanford Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford, United States; ¹⁰NYU School of Medicine, NYU Langone Health, New York City, United States; ¹¹University of Western Ontario, London, Canada; ¹²Baylor College of Medicine, Houston, United States

ANGPTL3 as a Target to Treat Dyslipidemia


- Dyslipidemia is a major risk factor for cardiovascular disease (CVD), and residual risk of CVD persists even with current standard of care (including PCSK9 inhibitors)
- ANGPTL3 is a key regulator of lipid and lipoprotein metabolism with multiple potential nodes of action
- Loss-of-function mutations in ANGPTL3 lead to low LDL-C, VLDL-C, HDL-C, and triglycerides (TG)
 - > Reduced risk of CVD based on genetic studies
 - ➤ No known adverse phenotype associated with genetic deficiency in *ANGPTL3*
 - > Homozygotes have familial combined hypolipidemia

Potential Regulatory Nodes of Action of ANGPTL3



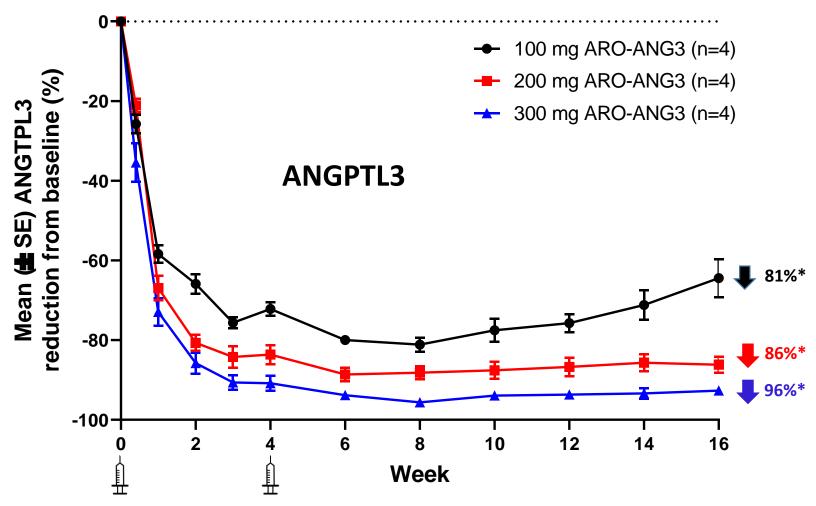
Silencing ANGPTL3 with ARO-ANG3 by RNA interference

- ANGPTL3 is primarily synthesized in hepatocytes
- Ideal target for gene silencing therapy with a specific siRNA derived from Arrowhead's TRiM™ platform
 - ARO-ANG3 is a SC administered siRNA directed to hepatocytes, where it specifically degrades the mRNA for ANGPTL3
 - > This induces deep and durable silencing of the ANGPTL3 gene while avoiding off-target effects

AROANG1001 First-in-Human Study Design – Healthy Volunteers

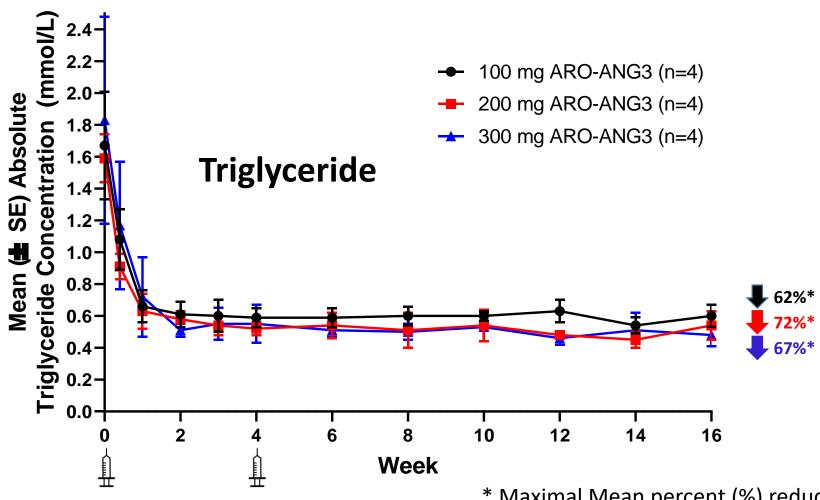
Phase 1 study evaluating the safety, pharmacokinetic and pharmacodynamic effects of ARO-ANG3: STUDY OBJECTIVES

Specific Objectives				
Primary Objective	 Evaluate incidence of adverse events as a measure of safety and tolerability 			
Secondary Objectives	Evaluate pharmacokineticsDetermine change from baseline serum ANGPTL3			
Exploratory Objectives	 Evaluate fasting lipids and lipoproteins (including TG, LDL-C, Non-HDL-C, HDL-C, ApoB) Evaluate fasting and 2-hour postprandial TGs 			

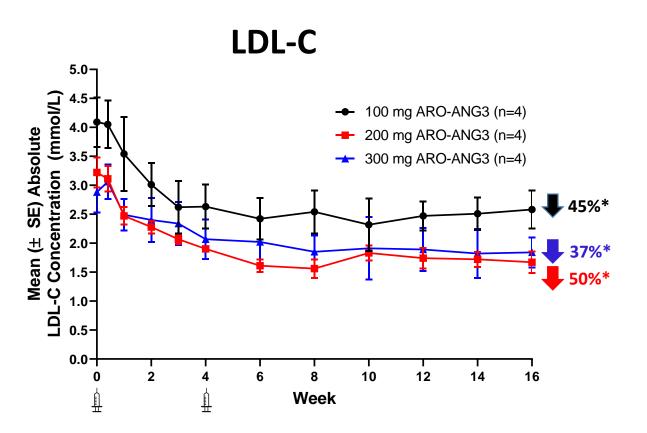

Baseline Characteristics of Repeat Dose Healthy Volunteers*

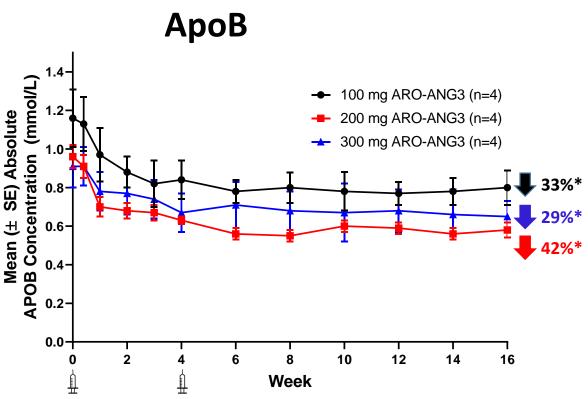
	Repeat Dose				
Mean (Range)	100 mg Cohort 2b n = 4 (all active)	200 mg Cohort 3b n = 4 (all active)	300 mg Cohort 4b n = 4 (all active)		
Age (years)	47.0 (20 – 62)	43.3 (29-55)	30.8 (22-42)		
% Male	50%	100%	50%		
BMI (kg/m²)	25.1 (21.7 – 28.0)	25.3 (22.4 – 28.4)	32.0 (25.6 – 39.9)		
ANGPTL3 (ng/mL)	98 (92 - 112)	107 (90 - 119)	91 (69 - 107)		
TG (mmol/L)	1.67 (0.81 – 2.31)	1.59 (1.27 – 1.85)	1.83 (0.64 - 3.66)		
VLDL-C (mmol/L)	0.76 (0.36 – 1.06)	0.73 (0.57 – 0.85)	0.83 (0.28 – 1.68)		
LDL-C (mmol/L) (direct assay)	4.09 (3.29 – 5.00)	3.22 (2.75 – 3.96)	2.88 (2.28 – 3.68)		
HDL-C (mmol/L)	1.30 (0.98 - 1.97)	1.02 (0.93 – 1.14)	0.95 (0.67 – 1.42)		
TC (mmol/L)	6.39 (5.34 - 7.30)	5.26 (4.90 - 5.88)	4.87 (3.91 - 5.80)		
Non-HDL-C (mmol/L)	5.10 (3.94 - 6.11)	4.24(3.76 - 4.90)	3.92 (3.11 - 5.13)		
ApoB (mmol/L)	1.16 (0.86 - 1.43)	0.96 (0.81 - 1.09)	0.91 (0.75 - 1.21)		

ESC Congress 2020
The Digital Experience

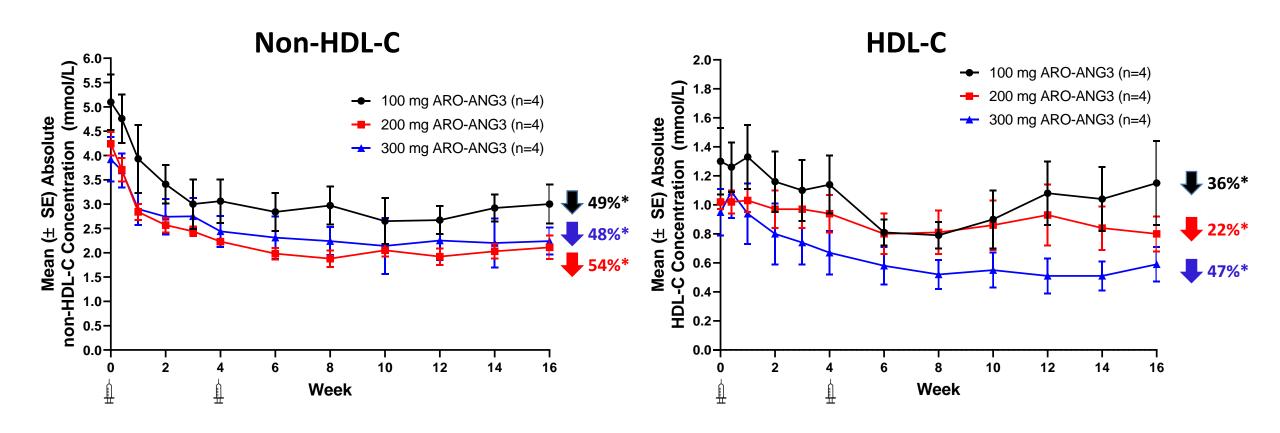

^{*}Inclusion criteria: TG > 1.13 mmol/L and LDL-C >1.81 mmol/L, not on statins or other lipid-lowering medications

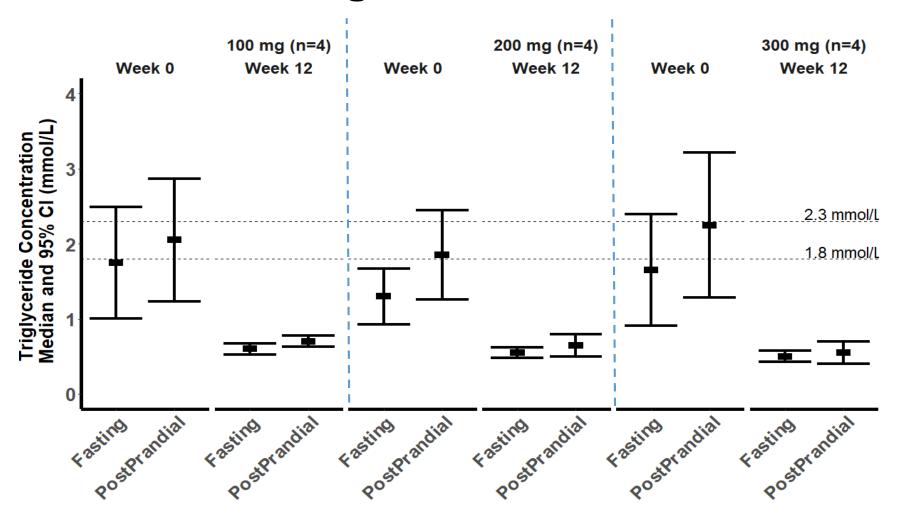
Repeat Dose ARO-ANG3 Demonstrated Substantial and Durable Reductions in ANGPTL3 in Healthy Volunteers Over 16 Weeks




^{*} Maximal Mean percent (%) reductions from baseline

Repeat Dose ARO-ANG3 Demonstrated Substantial and Durable Reductions in TG in Healthy Volunteers Over 16 Weeks


Repeat Dose ARO-ANG3 Demonstrated Reductions in LDL-C and APOB in Healthy Volunteers Over 16 Weeks


^{*} Maximal Mean percent (%) reductions from baseline

Repeat Dose ARO-ANG3 Demonstrated Reductions in non-HDL-C and HDL-C in Healthy Volunteers Over 16 Weeks

^{*} Maximal Mean percent (%) reductions from baseline

Reduction in <u>fasting and postprandial TG</u> in healthy volunteers receiving ARO-ANG3, Week 12

POST-PRANDIAL STUDY

Standardized oral fat load followed by 2-hour TG measurement.

Safety Summary: Repeat Dose Healthy Volunteer Cohorts *

AEs Reported in > 1 subject	100 mg Cohort 2b	200 mg Cohort 3b	300 mg Cohort 4b	
AE Term (MedDRA Preferred Term)	n = 4 (all active)	n = 4 (all active)	n = 4 (all active)	Total n = 12
Headache	1 (25%)	1 (25%)	3 (75%)	5 (42%)
Upper respiratory tract infection	1 (25%)	1 (25%)	2 (50%)	4 (33%)
Vascular access site bruising, Vascular access site swelling	1 (25%)	0 (0)	3 (75%)	4 (33%)
Ligament sprain, Muscle strain, Tendon injury	2 (50%)	0 (0)	1 (25%)	3 (25%)
Diarrhea	0 (0)	0 (0)	2 (50%)	2 (17%)
Injection site bruising, injection site discoloration	0 (0)	0 (0)	2 (50%)	2 (17%)
Lethargy	1 (25%)	1 (25%)	0 (0)	2 (17%)
Abdominal pain, Abdominal pain lower	1 (25%)	0 (0)	1 (25%)	2 (17%)

- No reported SAEs
- No discontinuation of dosing
- No clinically significant adverse changes in platelets, total bilirubin, creatinine, transaminases
- Headache (all mild, all considered "not related" to drug) was most common AE

ESC Congress 2020
The Digital Experience

Summary and Conclusions

- In normal volunteers, repeat doses of ARO-ANG3, an investigational RNAi therapeutic that silences *ANGPTL3* mRNA, demonstrated:
 - Dose-dependent reduction in fasting ANGPTL3
 - Maximal mean reductions in fasting lipid, lipoprotein, and apolipoprotein concentrations of:
 - > -71% in TG
 - > -50% in LDL-C
 - → -42% in ApoB
 - > -34% in non-HDL-C
 - ➤ -47% in HDL-C
 - Lipid, lipoprotein, and apolipoprotein reductions sustained to week 16
- ARO-ANG3 had a favorable safety and tolerability profile
- ANGPTL3 inhibition has the potential to effectively correct combined hyperlipidemia and decrease residual risk in patients with CVD on guideline-recommended standard of care