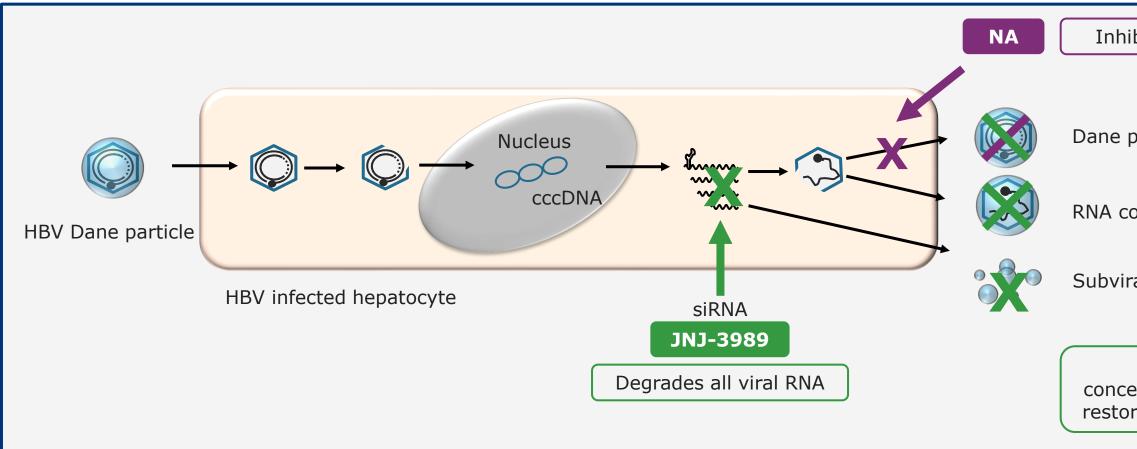


Short interfering RNA JNJ-3989 combination therapy in chronic hepatitis B shows potent reduction of all viral markers but no correlate was identified for HBsAg reduction and baseline factors

Edward Gane¹, Stephen Locarnini², Tien Huey Lim³, Simone I. Strasser⁴, William Sievert⁵, Wendy Cheng^{6,7}, Alex J. Thompson⁸, Bruce D. Given⁹, Thomas Schluep⁹, James Hamilton⁹, Michael Biermer¹⁰, Ronald Kalmeijer¹¹, Maria Beumont¹¹, Oliver Lenz¹⁰, Fillip De Ridder¹⁰, Gavin Cloherty¹², Danny Ka-Ho Wong¹³, Christian Schwabe¹⁴, Kathy Jackson², Carlo Ferrari¹⁵, Ching Lung Lai¹³, Robert G. Gish¹⁶, Man-Fung Yuen¹³ ¹University of Auckland, Auckland, New Zealand; ²Victorian Infectious Diseases Reference Laboratory, Victoria, Australia; ³Middlemore Hospital, Auckland, New Zealand; ⁴Royal Prince Alfred Hospital, Sydney, Australia; ⁵Monash Health and Monash University, Melbourne, Australia; ⁶Royal Perth Hospital, Perth, Australia; ⁷Linear Clinical Research, Perth, Australia; ⁸St. Vincent's Hospital, Melbourne, Australia; ⁹Arrowhead Pharmaceuticals, Pasadena, CA, USA; ¹⁰Janssen Pharmaceuticals BV, Beerse, Belgium; ¹¹Janssen R&D, Titusville, NJ, USA; ¹²Abbott Diagnostics, Abbott Park, IL, USA; ¹³The University of Hong Kong, Hong Kong, China; ¹⁴New Zealand Clinical Research; ¹⁵University of Parma, Parma, Italy; ¹⁶Hepatitis B Foundation, Doylestown, PA, USA

Hepatitis B virus


PHARMACEUTICAL COMPANIES OF Johnson + Johnson

Disclosures for all authors

- EG has been an advisor and/or speaker for AbbVie, Aligos, Arbutus, Arrowhead, Assembly, Avalia, Clear B Therapeutics, Dicerna, DrugFarm, Enanta, Finch Therapeutics, Gilead Sciences, GlaxoSmithKline, Janssen, Merck, Novartis, Roche and Vir Bio.
- SL receives consulting fees from Roche Molecular, AusBio Ltd, Janssen, Abbvie and Clear-B, and contract research grants from Spring Bank Pharmaceuticals, Inc. and Clear-B.
- **SS** has received honoraria for advisory boards or speaker fees from Gilead, BMS, AbbVie, MSD, Bayer, Eisai, Ipsen, Pfizer and CSL.
- AT has served on advisory boards for Gilead, Abbvie, Merck, BMS, Bayer and Eisai, has received speaker fees from Gilead, Abbvie, Merck and BMS, and has received institutional research grants from Gilead, Abbvie and Merck.
- **BG, TS,** and **JH** are/were employees of Arrowhead and may be Arrowhead shareholders
- MB, RK, MB, OL and FDR are employees of Janssen Pharmaceuticals and may be Johnson & Johnson stockholders.
- **GC** is an Abbott employee and shareholder.
- **CS** has provided advice to Johnson & Johnson and Vir Biotechnology.
- **CF** is an advisory board member for Gilead, Roche, MSD, Abbvie, BMS and Vir, a consultant for Gilead, Arrowhead, Abbvie, Humabs (Ch), Abivax and Transgene, and receives research grants from Gilead, Roche, Abbvie and Bristol Myer Squibb.
- CLL discloses sponsored lectures for Gilead Sciences
- RGG had grants/research support from Gilead is/has been a consultant and/or advisor to Abbot, Abbvie, Access Biologicals, Antios, Arena, Arrowhead, Baver AG, Bristol Myers Squibb, Dova, Dynavax, Eiger, Eisai, Enyo, eStudySite, Exelixis, Forty-Seven Inc, Genlantis, Gerson Lehrmann Group, Gilead Sciences, HepaTX, HepQuant, Intercept, Ionis, Janssen, Laboratory for Advanced Medicine, Lilly, Merck, Salix, Shionogi, Spring Bank, and Viking Therapeutics, hold positions on scientific or clinical advisory boards for: Abbott, AbbVie, Merck, Arrowhead, Bayer, Dova Pharmaceuticals, Eiger, Enyo, Hatch Biofund, HepQuant, Intercept, Jansen, Medimmune is an advisory consultant for Biocollections, Fujifilm/Wako, and Quest, is on the data safety monitoring board for Ionis, and Eiger, has consultant confidentiality agreements with: Abbot, Abbvie, Access Biologicals, ADMA Biologics, AEC Partners, Aligos Therapeutics, Arena Pharmaceuticals, Arrowhead, Arterys Inc, Alexion, Altimmune, Antios Therapeuctics, AprosTx, Bayer, Cirina, Consumer Health Products Assoc, DiaSorin Inc, Dova Pharmaceuticals, DRG Abacus, Dynavax, Echosens, Eiger, Enyo, Exelixis, Forty-Seven Inc, Fujifilm Wako Diagnositics, Gilead, HepQuant, HepaTx, IDLogig, Intellia, Intercept, Inotek, Igvia, Janssen/J&J, KannaLife, Laboratory for Advanced Medicine, Labyrinth Holdings, Lilly, MedImmune, Merck, New Enterprise Associates, Ogilvy CommonHealth, Organovo, Patient Connect, ProdigY Biotech, Prometheus Laboratories, Refuah Solutions, Regulus Therapeutics, Salix, Shionogi, Spring Bank, Trimaran, and Viking Therapeutic, has speaker contracts with Abbvie, Bayer, Bristol Myers Squibb, Dova Pharmaceuticals, Eisai, Gilead, Intercept, Salix, and Shionogi, is a minor stock shareholder in RiboSciences, has stock options in Eiger, AngioCrine, and HepQuant;
- M-FY serves as advisor/consultant for AbbVie, Arbutus Biopharma, Allovir International Bristol Myer Squibb, Clear B Therapeutics, Dicerna Pharmaceuticals, GlaxoSmithKline, Gilead Sciences, Janssen, Merck Sharp and Dohme, Roche and Springbank Pharmaceuticals, and receives grant/research support from Assembly Biosciences, Arrowhead Pharmaceuticals, Bristol Myer Squibb, Fujirebio Incorporation, Gilead Sciences, Merck Sharp and Dohme, Roche, Springbank Pharmaceuticals and Sysmex Corporation
- T-HL, WS, WC, DK-HW and KJ have no disclosures

JNJ-3989: Mechanisms of action

- NAs inhibit viral replication but **do not prevent the production of HBsAg**
- In AROHBV1001, JNJ-3989 (**100–400 mg; 3 monthly injections**) in combination with NA (TDF or ETV) resulted in potent reduction of **HBsAg**, **HBeAg**, **HBV RNA and HBcrAg**, and was well tolerated in patients with CHB¹
- The effects were sustained in 38% of patients until **Day 392** (336 days after last dose of JNJ-3989) with a mean (SE) HBsAg reduction of 1.96 (0.20) \log_{10} IU/mL in patients with "sustained" response^{*1}

1. Gane et al. EASL 2020. Oral presentation GS10. Sustained response was defined as a >1 \log_{10} IU/ml reduction in HBsAg from Day 0 through Day 392. cccDNA, covalently closed circular DNA; CHB, chronic hepatitis B; ETV, entecavir; HBeAg, hepatitis B e antigen; HBcrAg, hepatitis B core related antigen; HBsAg, hepatitis B surface antigen; HBV RNA, hepatitis B virus RNA; NA, nucleos(t)ide analogue; pgRNA, pregenomic RNA; SE, standard error; siRNA, short interfering RNA; TDF, tenofovir disoproxil fumarate

Inhibits DNA formation Dane particle containing DNA RNA containing particle (pgRNA) Subviral particles (HBsAg) Reducing HBsAg concentrations is expected to restore the immune response

AROHBV1001: Objectives of analyses through Day 168

To assess the impact of baseline factors on HBsAg reduction during treatment with JNJ-3989 and NA

1

To compare the effect of JNJ-3989 and NA on HBsAg, HBeAg, HBcrAg and HBV **RNA** levels

AROHBV1001: Study design

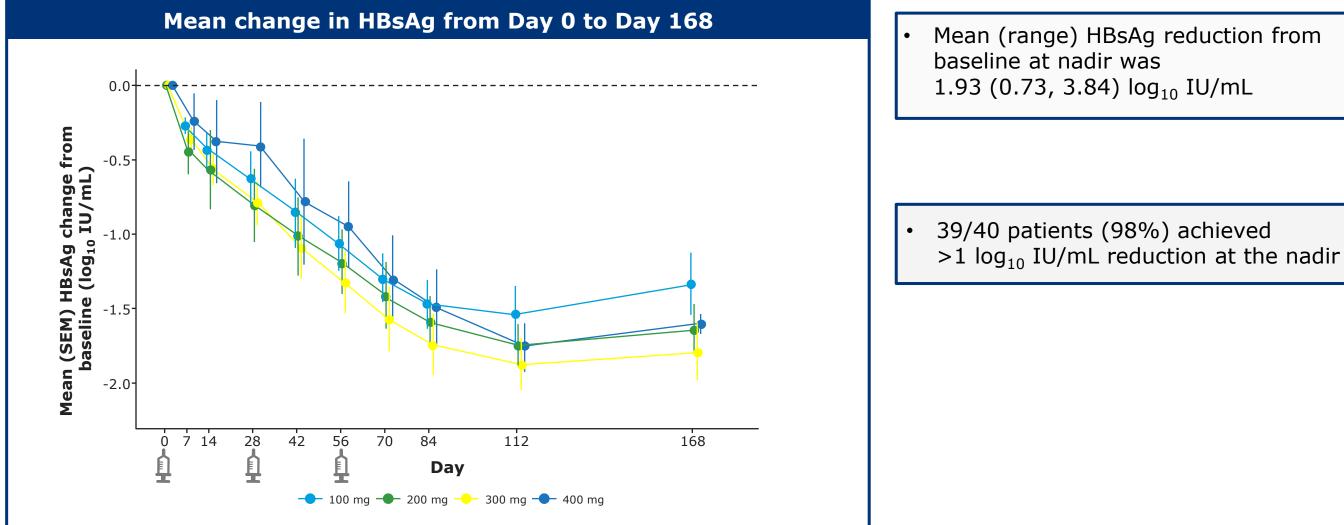
Cohorts receiving JNJ-3989 (100-400mg; $3 \times Q4W$) + NA

Study population:

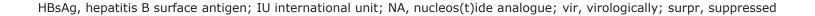
- CHB HBeAg-positive or -negative patients 1.
- NA-experienced or -naïve patients 2.

Dose administration:

- Injections (sc) of JNJ-3989 were given on Days 0, 28 and 56
- Oral QD treatment with TDF or ETV was started or continued on Day 0 and was administered throughout the study

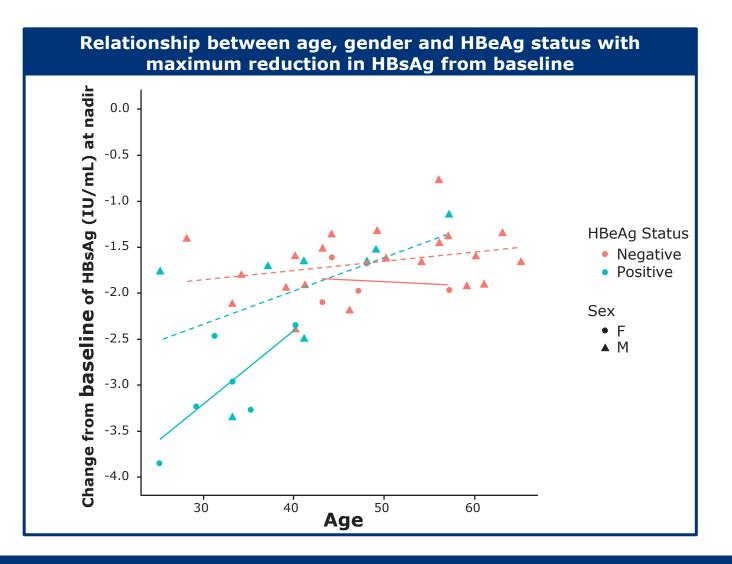

AROHBV1001: Baseline characteristics and demographics

Baseline patient characteristics of the JNJ-3989 3 x Q4W 100-400 mg cohort		Baseline levels of viral markers in the JNJ-3989 3 x Q4W 100-400 mg cohort*			
Baseline Characteristics	Number of patients (N=40)	Viral maker	HBeAg Status	Ν	Mean (SE)
Age, years; median (range)	45 (26–66)	HBV DNA (log ₁₀ IU/mL)	Negative	3	2.7 (0.5)
Male, n (%)	29 (72.5)		Positive	8	6.7 (0.9)
	25 (72.5)	HBV RNA (log ₁₀ U/mL)	Negative	14	2.6 (0.2)
Race, n (%) Asian	34 (85.0) 1 (2.5)		Positive	14	6.3 (0.4)
Caucasian		HBcrAg (log ₁₀ kU/mL)	Negative	11	0.9 (0.2)
Other	5 (12.5)		Positive	14	4.8 (0.3)
NA-experienced, n (%)	32 (80.0)	HBeAg (log ₁₀ PEIU/mL)	Positive	14	1.7 (0.3)
HBeAg-positive, n (%)		HBsAg (log ₁₀ IU/mL)	Negative	26	2.7 (0.1)
	14 (35.0)		Positive	14	3.9 (0.2)


HBeAg, hepatitis B e-antigen; HBcrAg, hepatitis B core related antigen; HBsAg, hepatitis B surface antigen; IU, international units; kU, kilo units; LLOQ, lower limit of quantification; NA, nucleos(t)ide analogue; PEIU, Paul Erlich Institute Units; Q4W, every 4 weeks; SE, standard error

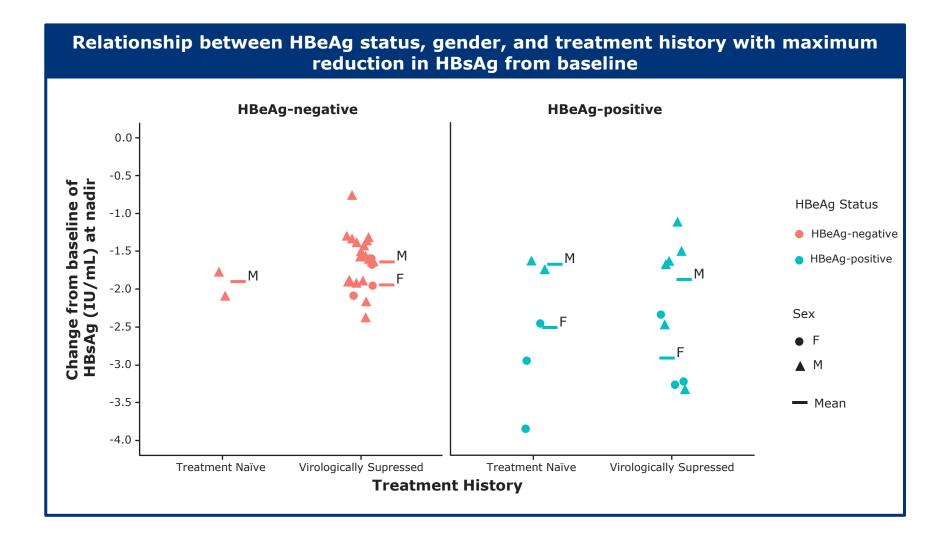
AROHBV1001: Effect of JNJ-3989 and NA treatment on reduction in HBsAg

Treatment with JNJ-3989 and NA resulted in pronounced HBsAg reductions



AROHBV1001: Effect of JNJ-3989 and NA treatment on reduction in HBsAg according to baseline characteristics

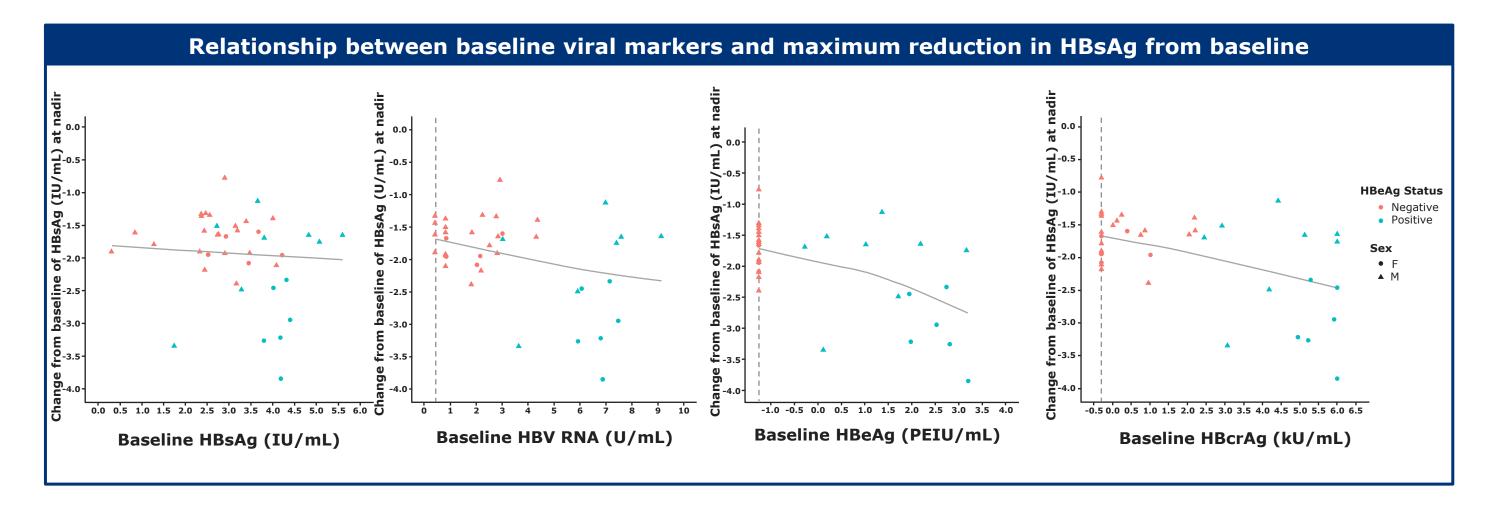
Maximum HBsAg reduction from baseline n/N (%)	<2 log ₁₀ IU/mL
Overall	28/40 (70)
HBeAg+	6/14 (43)
HBeAg ⁻	22/26 (85)
Female	4/11 (36)
Male	24/29 (83)
≤40 years old	6/15 (40)
>40 years old	22/25 (88)


Reductions in HBsAg were more pronounced in HBeAg-positive patients compared with HBeAg-negative patients

$\geq 2 \log_{10} IU/mL$

12/40 (30)
8/14 (57)
4/26 (15)
7/11 (64)
5/29 (17)
9/15 (60)
3/25 (12)

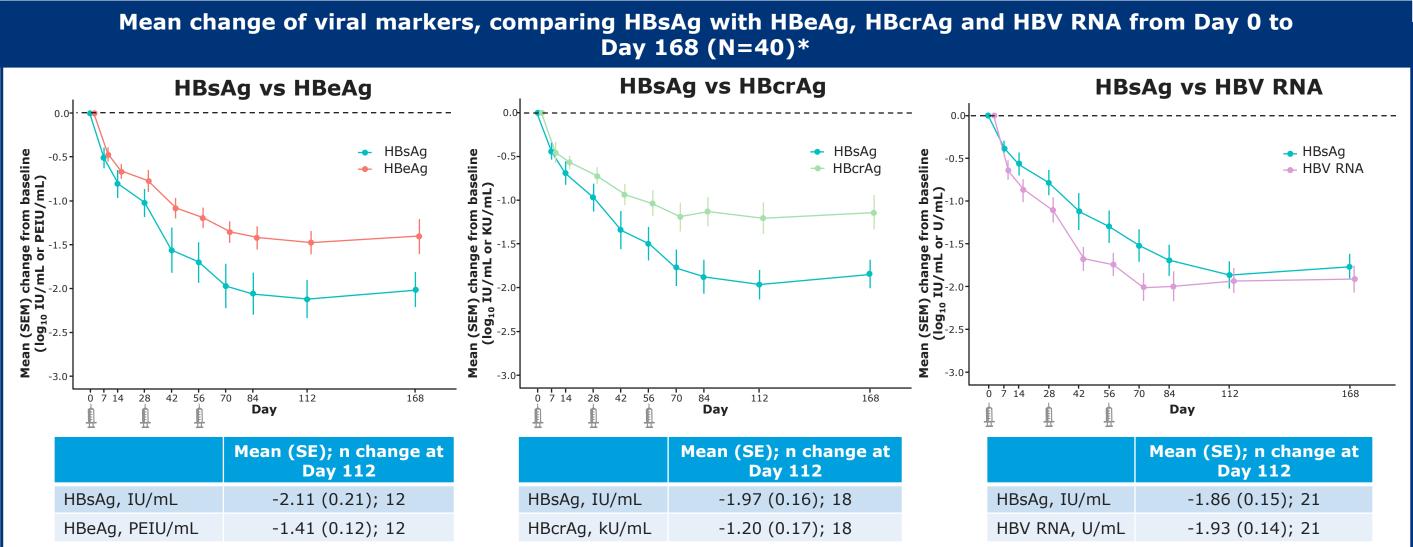
AROHBV1001: Effect of JNJ-3989 and NA treatment on reduction in HBsAg according to treatment history


Treatment history was not associated with reductions in HBsAg

PHARMACEUTICAL COMPANIES OF

9

AROHBV1001: Effect of JNJ-3989 and NA treatment on reduction in HBsAg according to baseline viral markers


Reduction in HBsAg was not associated with baseline HBsAg levels Larger reductions in HBsAg were associated with higher levels of HBV RNA, HBeAg and HBcrAg at baseline

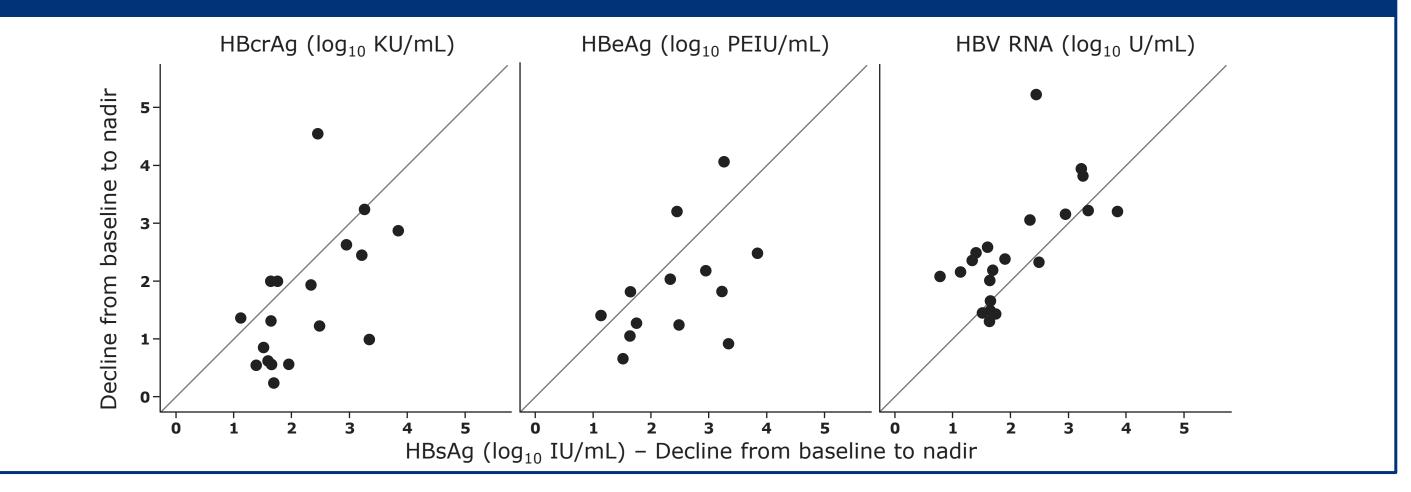
Dotted lines indicate negative samples. F, female; HBcrAg, hepatitis B core related antigen; HBeAg, hepatitis B e-antigen; HBsAg, hepatitis B surface antigen; HBV RNA, hepatitis B virus RNA; IU, international unit; M, male; NA, nucleos(t)ide analogue; PEIU, Paul Erlich Institute Units

AROHBV1001: Effect of JNJ-3989 and NA treatment on reduction of all viral markers

Day 168 (N=40)*

Reductions in HBsAg and HBV RNA were generally more pronounced compared with HBeAg and HBcrAg

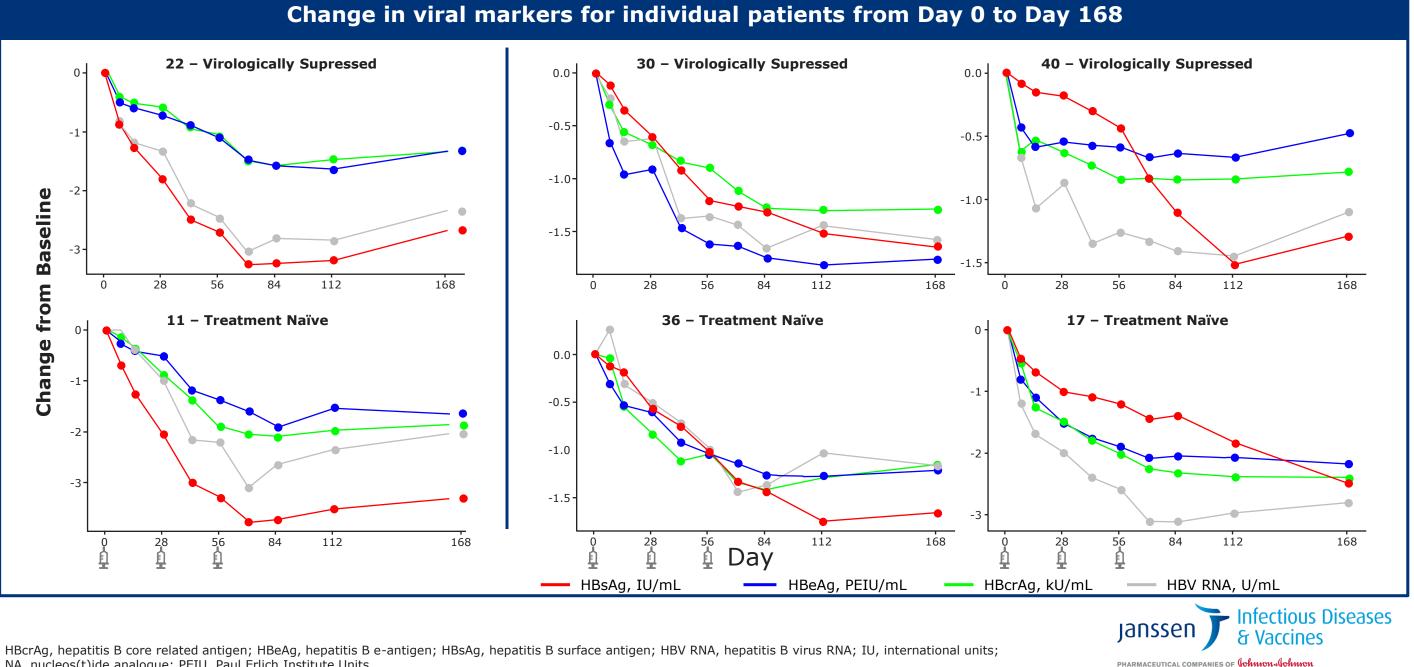
*Only patients with baseline levels of HBeAg, HBcrAg and HBV RNA levels >1 log₁₀ IU/mL above LLOQ were included, respectively HBcrAg, hepatitis B core related antigen; HBeAg, hepatitis B e-antigen; HBsAg, hepatitis B surface antigen; HBV RNA, hepatitis B virus RNA; IU, international unit; LLOQ, lower limit of quantification; NA, nucleos(t)ide analogue; PEIU, Paul Erlich Institute Units; SE, standard error



PHARMACEUTICAL COMPANIES OF (Johnson + Johnson

AROHBV1001: Effect of JNJ-3989 and NA treatment on reduction of viral markers for individual patients (1/2)

Correlation between maximum HBsAg decline and HBeAg, HBcrAg and HBV RNA from Day 0 for individual patients*



*Only patients with baseline levels of HBeAg, HBcrAg and HBV RNA levels $>1 \log_{10}$ above LLOQ were included

HBcrAg, hepatitis B core related antigen; HBeAg, hepatitis B e-antigen; HBsAg, hepatitis B surface antigen; HBV RNA, hepatitis B virus RNA; IU, international unit; LLOQ, lower limit of quantification; NA, nucleos(t)ide analogue

AROHBV1001: Effect of JNJ-3989 and NA treatment on reduction in viral markers for individual patients (2/2)

NA, nucleos(t)ide analogue; PEIU, Paul Erlich Institute Units

13

AROHBV1001: Conclusions

Treatment with JNJ-3989 (100–400mg, Q4W) in combination with NA resulted in sustained reductions of all viral markers HBsAg, HBeAg, HBcrAg and HBV RNA

Treatment with JNJ-3989 (100–400mg, Q4W) and an NA was associated with greater HBsAg reductions in:

- HBeAg-positive patients
- Patients with higher levels of HBV RNA, HBeAg and HBcrAg at baseline

Reductions in HBsAg and HBV RNA were more pronounced compared with HBeAg and HBcrAg

These findings are being evaluated in larger Phase 2b studies

CHB, chronic hepatitis B; HBcrAg, hepatitis B core-related antigen; HBeAg, hepatitis B e-antigen; HBsAg, hepatitis B surface antigen; HBV RNA, hepatitis B virus RNA; NA, nucleos(t)ide analogue; O4w, every 4 weeks

PHARMACEUTICAL COMPANIES OF

14

Acknowledgments

We express our gratitude to the patients who participated in this study. The authors also thank other Arrowhead staff members for their contributions to this study. This study was sponsored by Arrowhead Pharmaceuticals, Inc. Medical writing support for the development of this presentation, under the direction of the authors, was provided by Eleanor Coppins, of Ashfield MedComms, an Ashfield Health company, and funded by Janssen Pharmaceuticals.

