

AASLD 2015 Investor Reception Presentation

San Francisco, CA November 16, 2015

2015: data-rich year for HBV program

Long term study in CHB chimps started to read out

Single dose ARC-520 studies in patients read out

Analyst Day September 24, 2015

ARC-520 de-risked
Platform de-risked
Changed the HBV textbooks
Expanded program: additional candidate

Analyst day: summary of emerging story

Focused on 5 key questions:

- Is ARC-520 safe?
- What did we learn from the chimp study?
- Does the platform work?
- Will ARC-520 work?
- What is the outlook for ARC-520?

AASLD presentations are first opportunities to provide hard data supporting our summary and conclusions

Is ARC-520 Safe?

- 84 humans have had single doses (or 2x2 mg/kg 2 weeks apart in six patients)
 - No AEs rated as serious or severe
 - No signs of end organ toxicity
 - No discontinuations due to AEs
- 9 chimps received 6 11 monthly doses ARC-520
 - No signs of any toxicity

ARC-520 has been well tolerated

Treatment emergent AEs in Heparc-2001

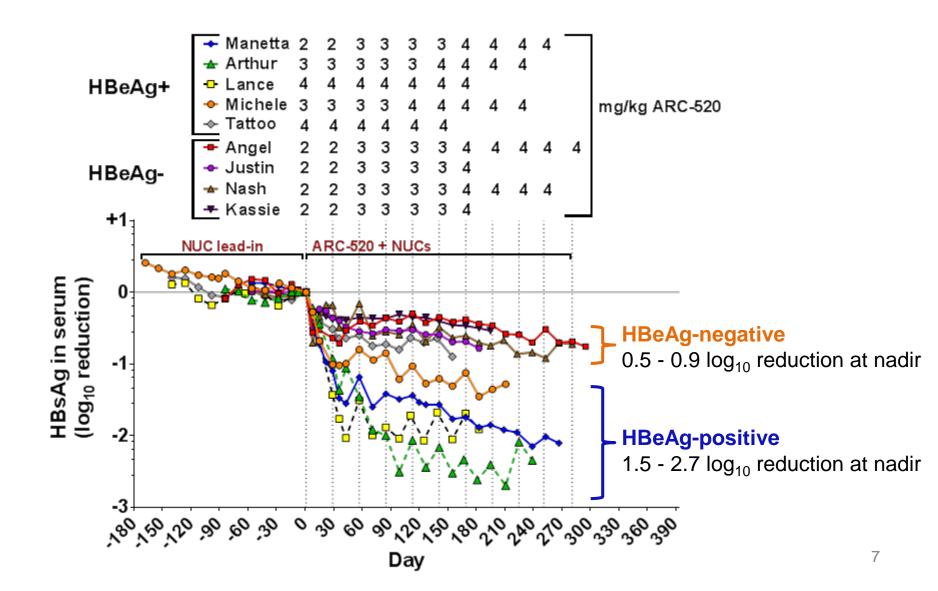
Adverse Event	1 mg/kg n=6	2 mg/kg n=6	3 mg/kg n=6	4 mg/kg n=24	2 mg/kg x2; n=6	PBO n=10
All	1	5	1	2	1	0
Extravasation		1 mild				
Malaise		1 mod				
Influenza	1 mild					
Blood CK increase		1 mild				
Diabetes Mellitus		1 mild				
Pain in extremity			1 mild			
Presyncope		1 mod				
Headache				1 mild		
Dizziness				1 mild		
Fever					1 mild	

All reported AEs were deemed unrelated to ARC-520 by PI

Arrowhead Research

What did we learn from the chimp study?

1. ARC-520 leads to deep HBsAg reduction

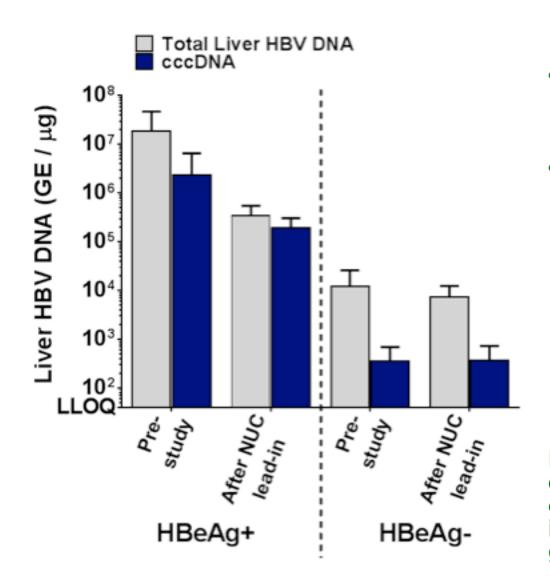

HBeAg status	HBsAg mean peak KD
HBeAg(+): 4 chimps	99% (2 log)
HBeAg(-): 4 chimps	81% (0.7 log)
HBeAg transitional: 1 chimp	87.4% (0.9 log)

- **2.** Evidence of immune reactivation in 2 of the 4 HBeAg(+) chimps and 1 achieved sustained virologic response (SVR) off therapy
- **3.** We concluded that different responses due to decrease of cccDNA during lifecycle of virus: HBsAg increasingly expressed by integrated DNA

Deep KD with ARC-520 and new paradigm for lifecycle of virus

Deep reductions in HBsAg correlate with HBeAg status

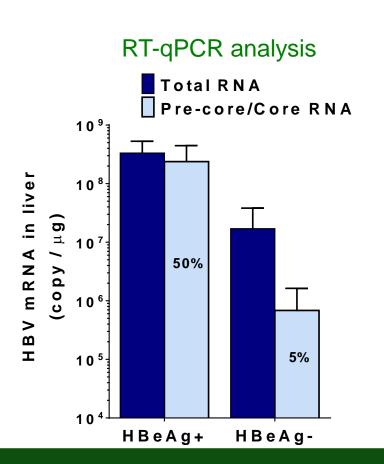
Evidence for immune re-activation in two chimps with chronic dosing

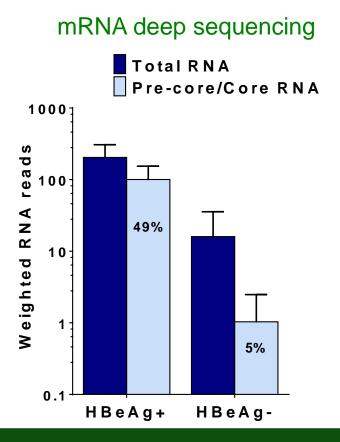


- 2 of 4 HBeAg positive chimps developed evidence on biopsy of cytokine activation in the pattern expected for immunological de-repression
- One of these chimps had an on-treatment flare and shows ongoing viral suppression following withdrawal of all therapy

Immune re-activation will be presented in detail at HepDart in December

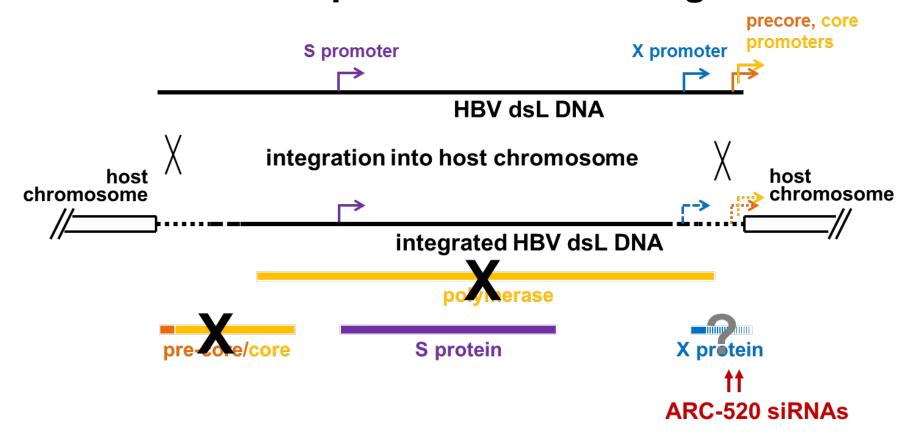
Predominant form of liver HBV DNA differs in HBeAg- vs. HBeAg+


- On NUCs, most of HBV DNA of HBeAg+ chimps is cccDNA
- 500-fold less cccDNA in HBeAgcompared to HBeAg+
 - Only 5% of total HBV DNA in liver of HBeAg- was cccDNA
 - Liver DNA levels in HBeAgwere negligibly affected by NUCs


Conclusion:

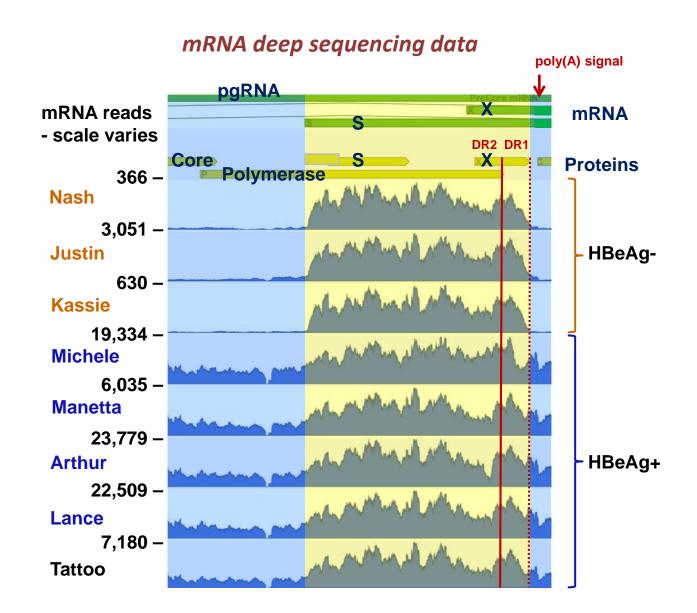
DNA profile in HBeAg- chimps is consistent with a high proportion of HBV DNA existing as integrated copies in the host genome

HBeAg- chimps have fewer pre-core/core transcripts than HBeAg pos chimps



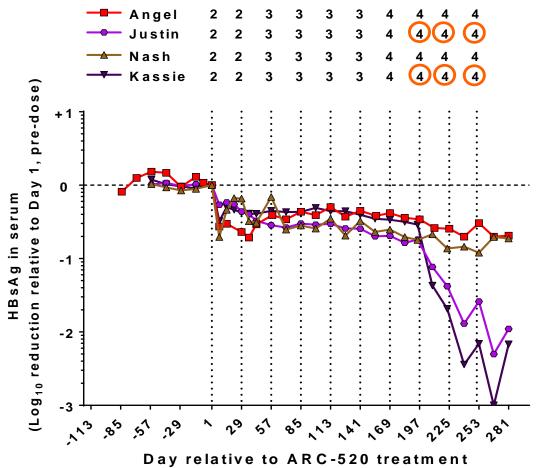
10-fold more transcripts in HBeAg+ than HBeAg-

Process of HBV dsL DNA integration and theoretical production of HBsAg



- Integrated DNA allows for expression of primarily HBsAg
 - Expression of truncated X protein also possible
- Explains persistent HBsAg expression despite low cccDNA in HBeAgchimps
- Loss of ARC-520 target sites explains lower HBsAg KD in HBeAg- chimps

HBV transcript profiles differ between HBeAg- and HBeAg+ chimps



RNAi triggers directed to expression from integrated DNA in HBeAg- chimps

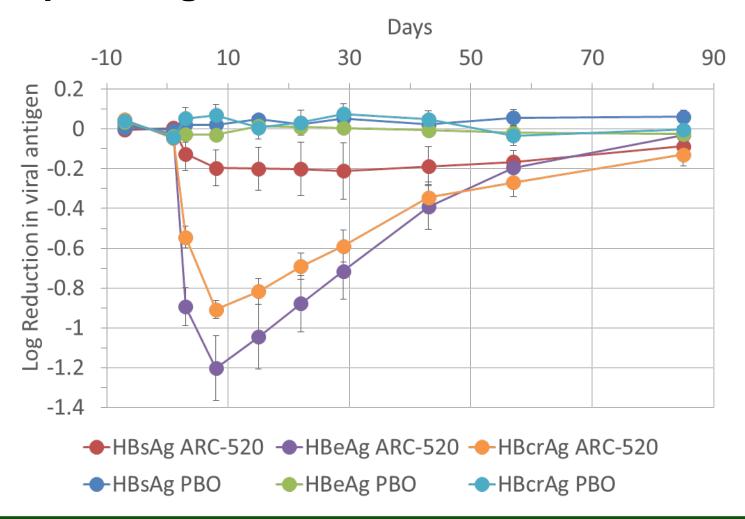
- siRNA with target sequence outside of DR1-DR2 (siHBV-i) was designed to target HBV RNA expressed from integrated HBV DNA.
- siHBV-i was administered to two HBeAg- chimps once a month for 3 months following ARC-520 therapy.
- siHBV-i gave deep reductions in HBsAg in HBeAg- chimps, similar to those observed using ARC-520 in HBeAg+ chimps.

RNAi triggers targeting expression from integrated DNA produce deep KD in HBeAg- chimps

Back to the clinical program Does the platform work in HBV patients?

- The integrated DNA story made this question unanswerable with HBsAg in treatment experienced patients
- The answer in humans came from looking at HBeAg and HBcrAg levels in treatment experienced patients and HBsAg in naïve, HBeAg positive patients

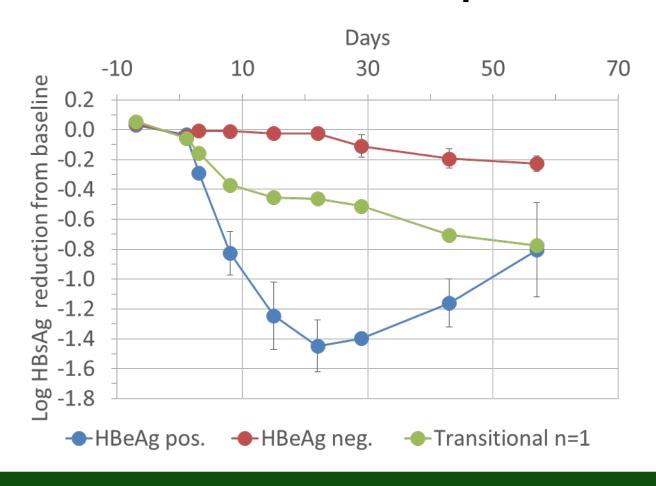
Heparc-2001 explored four HBV groups



- Treatment experienced (2-8 years prior entecavir)
 - HBeAg negative
 - HBeAg positive
- Naïve to prior treatment
 - HBeAg negative
 - HBeAg positive

Cohort	Prior ETV	Pat Type	ARC-520 dose	Active / PBO	Baseline HBsAg mean (range)‡	Status
1	Yes**	HBeAg neg	1.0 mg/kg	6/2	3.4 (3.0-4.2)	Complete/Unblinded
2	Yes**	HBeAg neg	2.0 mg/kg	6/2	3.5 (3.2-4.3)	Complete/Unblinded
3	Yes**	HBeAg neg	3.0 mg/kg	6/2	3.6 (3.1-4.0)	Complete/Unblinded
4	Yes**	HBeAg neg	4.0 mg/kg	6/2	3.4 (3.2-4.0)	Complete/Unblinded
5	Yes**	HBeAg pos	4.0 mg/kg	6/2	3.6 (3.1-4.2)	Complete/Unblinded
6 *	Yes**	HBeAg pos	2 x 2.0 mg/kg	6/0	3.3 (3.0-3.6)	Complete/Open label
		HBeAg pos		6/0	4.4 (3.1-4.9)	
7	No	HBeAg neg	4.0 mg/kg	6/0	2.9 (0.8-3.6)	Ongoing / Open label

Deep HBeAg and HBcrAG KD in cohort 5



The platform works

Deep and durable HBsAg KD in treatment naïve patients

Transitional patient was HBeAg-pos. at baseline and HBeAg negative at days 3 to 43

Consistent with our hypothesis that HBeAg-pos, treatment naïve patients would be cccDNA driven

Max reductions in viral antigens

				Log reduction from baseline Mean (max)			
Cohort	Dose	HBeAg	Prior	HBsAg HBcrAg		HBeAg	
	[mg/kg]	status	ETV				
1	1	Neg	Υ	-0.2 (-0.3)*	-0.2 (-0.2)	N/A	
2	2	Neg	Υ	-0.2 (-0.3)*	-0.5 (-0.5)	N/A	
3	3	Neg	Υ	-0.3 (-0.4)*	-0.4 (-0.7)	N/A	
4	4	Neg	Υ	-0.4 (-0.5)*	-0.9 (-1.1)	N/A	
5	4	Pos	Υ	-0.3 (-0.7)*	-0.9 (-1.1)	-1.2 (-1.7)	
6 [‡]	2x2	Pos	Υ	-0.5 (-0.8)+	-0.7 (-1.2)	Pending	
7‡,†	4	Pos	N	-1.5 (-1.9)+	Pending	Pending	
7 [‡]	4	Neg	N	-0.2 (-0.4)+	Pending	N/A	

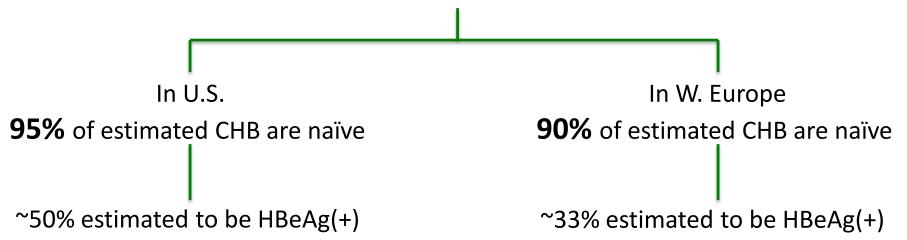
- Best HBsAg reduction was seen in naïve HBeAg-pos patients
- HBeAg-pos, ETV experienced patients had substantially higher reductions in HBeAg and HBcrAg compared to HBsAg
- HBeAg-neg., ETV experienced patients showed a dose response in HBcrAg; qHBsAg dose response was less pronounced
- Divided doses at 4 mg/kg were similar to a single dose

ARC-520 key points

- Well tolerated
- Deep KD in treatment-naïve HBeAg+ patients
 - Max 99% HBsAg KD (1.9 log); mean nadir 97% (1.5 logs)
 - Highest single dose KD ever reported in humans using RNAi
- Clearly disrupts virus in NUC-experienced and HBeAg- patients
 - >1 log KD of HBeAg, HBcrAg, and presumably others
 - ARC-520 intended for multi-dose therapy: sustained measurable HBsAg KD and very deep KD of all other antigens could be important to reaching functional cure

ARC-520 is very potent at silencing cccDNA: could be key component in achieving functional cure

What is the outlook for ARC-520?



As expected, HBV will have subpopulations that will respond differently to different treatments

- We identified cccDNA / integrated DNA as determinant of a subgroup
 - ARC-520 is well tolerated and deeply silences cccDNA
 - NUC-naïve HBeAg(+) patients are richest in cccDNA

Is that a small slice of a huge market?

No, it is a large segment of the chronic HBV (CHB) population

What about the rest of the market?

We have developed an additional candidate to:

- (1) Ensure broader coverage of entire market;
- (2) Provide 2 shots on goal

ARC-520

- Optimized for cccDNA KD
 - Clarity on KD and safety
- >1log KD in all antigens studied
- Began multi-dose studies
- Combo studies starting in Q4 with first IRB/regulatory approvals in hand

ARC-521

- Safety expected = ARC-520
- Optimized to include integrant KD
- Validated in chimps
 - Multi-log KD
- Complement to ARC-520
- IND or equivalent by June 2016

De-risked program with safety/activity of ARC-520, increased exposure to additional patient populations

Basic Take Home Points

- So far, single doses in humans and multiple doses in chimpanzees have been well tolerated
- Deep (even single dose record) knockdown has been demonstrated against multiple HBV viral antigens
- Immune awakening has been observed in 2 of 4 HBeAg positive chimps
- ARC-520 will be studied in four subgroups, under multiple doses and in combinations looking for a recipe to produce HBsAg seroclearance
- ARC-521, optimized against cccDNA and integrated DNA is in active development with regulatory submissions mid-2016