

Next Generation Dynamic PolyConjugate (DPC) for siRNA Delivery *in vivo*

Aaron Almeida Ph.D. Senior Scientist Chemistry Arrowhead Research Corporation

Dynamic Polyconjugate (DPC) technology for siRNA delivery *in vivo*

Components of a DPC

siRNA- Active Pharmaceutical Ingredient RISC mediated gene silencing

Endosomolytic Polymer

Facilitates entry of siRNA into cytoplasm

Poly Ethylene Glycol (PEG)

Inhibit membrane interactions of polymer during delivery

Targeting Ligand

Delivers siRNA and polymer to cells

Masking Chemistry

Reversible attachment chemistry which releases PEG and targeting ligands from polymer in endosomes

Mechanism of DPC-mediated siRNA delivery

in polymer unmasking

expression

Dynamic PolyConjugate (DPC) masking chemistry

Acidic pH of endosomes activates endosomolytic activity of polymer, facilitating release of siRNA to cytoplasm

DPCs for targeted siRNA delivery to hepatocytes

DPC-siRNA

nucleus

Ligand: N-acetyl galactosamine ligand (NAG)

ICR mice, t=60'

NAG ligand (hepatocyte targeted)

Hepatocyte-uptake of DPCs is ligand dependent

glucose ligand

(non-targeted)

NAG is a ligand for the asialoglycoprotein receptor on hepatocytes

Target gene knockdown is ligand dependent

DPC 2.0 – Separate targeting of the DPC polymer and the siRNA

Prototypical DPC

 Covalent attachment of siRNA to masked polymer

DPC polymer + targeted siRNA

- Masked polymer and siRNA are NOT attached and do NOT interact.
- Targeted independently to the same cell after co-injection
- Typically NAG-DPC and Chol-siRNA

Co-injection of hepatocyte-targeted NAG-DPC improves delivery of liver-tropic chol-siRNA

Target: Coagulation Factor 7

Exploration of polymer space

Polymer

Membrane lytic activity Amphipathic, poly cationic

Reversible Masking of Membrane Lytic Activity PEG to reduce membrane interactions during delivery

Targeting ligand to direct DPC to target ligand

DPC polymers:

Random co-polymerization of hydrophobic and hydrophilic monomers

DPC peptides: Membrane Lytic Peptides (MLP) Defined solid phase synthesis of hydrophobic and hydrophilic amino acids

Co-injection of NAG-MLP and chol-siRNA

Requirements for target gene KD and chol-siRNA titration in liver

single dose

+ NAG-MLP

Target gene knockdown requires: Liver-tropic siRNA (cholesterol-siRNA) <u>and</u> hepatocyte-targeted DPC peptide (NAG-MLP)

Co-injection of NAG-MLP with chol-siF7 enables highly efficient delivery

- ED₅₀ = 0.01 mg/kg chol-siF7

mice, 6 mg/kg NAG-MLP, 48 hr timepoint

Wooddell et al, Mol Ther 2013 May; 21(5) 973-85

PET imaging of mice injected with ¹²⁴I-NAG-MLP

(L) NAG-MLP vs. non-biodegradable (D) enantiomer

(L) and (D) forms are equally efficacious

NAG-MLP(L) NAG-MLP(D)

After siRNA delivery NAG-MLP (L) is rapidly metabolized in the liver and eliminated.

Efficacy in non-human primates

NAG-(L)-MLP dose titration + chol-siRNA, single iv dose Target: Coagulation Factor VII

- Highly efficacious
 - $ED_{50} NAG-MLP = 1 mg/kg$
 - >99% KD at 3 mg/kg NAG-MLP
 - >80% KD for 5 weeks
 - No change using chol-siLuc control

Modes of MLP Interactions with membranes

Transmembrane-like interactions provide potent membrane disruption

Influence of masking on MLP membrane interactions

Next generation delivery NAG-MLP DPCs

Hydrophilic extensions to further reduce hydrophobic interactions

- Introduce hydrophilic extension to reduce non-specific membrane interactions during delivery
- Inhibit transmembrane interactions of MLP during delivery
- Polyethylene Glycol (PEG) as a hydrophilic extension

Endosomolytic Peptide

|----Hydrophobic---||-----Hydrophilic----|

Hydrophilic-Endosomolytic Peptide

|-----Hydrophilic----||----Hydrophobic---||-----Hydrophilic----|

CDM-Masking

Hydrophilic Extension

Attachment of PEG to amine terminus reduces hemolytic activity

Red blood cell hemolysis assay shows significantly reduced lytic behavior for PEG-MLP's vs. MLP

Reduced Potency in siRNA knockdown, due to presence of PEG

How do we keep in vivo potency for siRNA knockdown?

Protease sensitive linker used to attach hydrophilic extension

- Hydrophilic extension reduces
 membrane interactions
- Removal of hydrophilic extension necessary for siRNA delivery potency
- Addition of protease sensitive cut-site allows removal of hydrophilic extension in the endosome

Identity of protease cut-site influences potency of siRNA knockdown

ICR Mice, 2 mg/kg chol-siRNA, 48 hr timepoint

PEG-XX-MLP shows similar efficacy to parent MLP

Can NAG be used as a hydrophilic extension?

- Decreased hemolysis with similar potency with PEG-XX-MLP's
 - Demonstrates protease cleavage to facilitate delivery with less lysis of base peptide due to N-terminal hydrophilic extension

- Can NAG be used as hydrophilic extension?
 - Provide both hydrophilic modification and potentially enhanced targeting

Attachment of NAG reduces hemolytic behavior of MLP

NAG-XX-MLP shows hemolytic behavior similar to that of PEG-XX-MLP

NAG-MLP showed increased activity in non-human primates compared to MLP

NAG-XX-MLP shows ~3-fold increased efficacy compared to MLP in non-human primates

Dynamic PolyConjugates (DPC's) as a Platform for siRNA Delivery

- Peptides can be used as DPC polymers (e.g. NAG-MLP)
- Co-injection of NAG-MLP and chol-siRNA is highly effective
- NAG-MLP is well-tolerated & biodegradable

- Hydrophilic extensions modulate non-specific membrane interactions of MLP
- Inclusion of a protease cleavable linker allows functional siRNA delivery
- Use of NAG as hydrophilic extension increases potency of MLP while reducing non-specific membrane interactions

DPC polymer + targeted siRNA

Contributors

<u>CSO</u> - Dave Lewis

Biology

Chris Wooddell So Wong Live Animal Qili Chu Research Holly Hamilton Julia Hegge Tom Reppen Tracie Milarch Stephanie Bertin Linda Goth Jacob Griffin Rachel Schmidt Vladimir Subbotin Vladimir TrubetskoySheryl Ferger Yinghua Bian Jessica Montez Hans Herweijer Alex Sokoloff

Chemistry

Dave Rozema Jason Klein Darren Wakefield Collin Hagen Anthony Perillo-Nicholas Lauren Carlson Andrei Blokhin Jeff Carlson Jonathon Benson

University of Wisconsin

Jamie Weichert Mohammed Farhoud Benny Titz

Thank you!

Questions?

Using NAG ligand to target DPCs to hepatocytes via the asialoglycoprotein receptor (ASGPr)

ASGPR

- Highly expressed in hepatocytes
 - » 0.5-1 million copies/cell
- Clears serum glycoproteins via clathrinmediated endocytosis
- High rate of uptake
- Recycling time ~15 minutes
- Conserved across species

N-acetylgalactosamine (NAG) is a high affinity ligand for ASGPr

Well Tolerated in non-human primates

NAG-(L)-MLP dose titration + chol-siRNA, single iv dose Target: Coagulation Factor VII

PEG-MLP loses potency with longer than ~40 PEG

Reduce number of examples