Short term RNA interference (RNAi) therapy in chronic hepatitis B (CHB) using JNJ-3989 brings majority of patients to HBsAg <100 IU/ml threshold

Man-Fung Yuen* 1, Stephen A. Locarnini2, Tien Huey Lim3, Simone Strasser4, William Sievert5, Wendy Cheng6,7, Alexander Thompson8, Bruce Given9, Thomas Schluep9, James Hamilton9, Gavin Cloherty10, Danny Wong1, Christian Schwabe11, Kathy Jackson2, Carlo Ferrari12, Ching-Lung Lai1, Robert G. Gish13, 14, Ed Gane11

Simplified theory of an HBV RNAi therapeutic

1. “HBsAg Theory”
 - Reducing HBsAg enables host immune system de-repression and long term control of virus

2. Destabilizing Viral Function
 - Silencing all antigens and reducing pgRNA could destabilize normal viral function
 - Enable host immune system de-repression and long term control of virus

Yuen MF et al. ILC 12 April 2019, PS-080
JNJ-3989 (ARO-HBV): Key design elements

- Addresses full HBV transcriptome
 - Two hepatocyte targeted RNAi molecules
 - Works for cccDNA and integrated-derived transcripts
 - Previously shown to reduce HBV DNA, HBV RNA, HBsAg, HBeAg, & HBcrAg \(^1,2\)
- Multiple triggers to avoid resistance development and increase coverage of viral genomes

1 Gane et al. 2018 Hepatology 68:6 LB-25
2 Gane et al. 2019 APASL Abstract 638
Study design AROHBV1001

- AROHBV1001 is a double blind, single dose escalating study in healthy volunteers and open label, multi-dose escalating study in patients with CHB

- The ongoing phase 2 portion of AROHBV1001 assesses 3 subcutaneous doses of JNJ-3989 administered weekly to monthly in HBeAg positive or negative CHB patients concomitantly with ETV or TDF

- This interim analysis reports reductions in HBsAg levels and safety in initial CHB cohorts
 - Reductions in HBsAg below certain thresholds in patients that had 24 weeks or more of HBsAg assay results (n=40)
 - Effect of more frequent dosing (every other week or weekly) vs. monthly dosing (n=40)
 - Safety and tolerability (includes all CHB patients in cohorts 2b-11, n=56)
Baseline characteristics of CHB patients with ≥ 24 weeks of results available

<table>
<thead>
<tr>
<th>Cohort</th>
<th>2b</th>
<th>3b</th>
<th>4b</th>
<th>5b</th>
<th>8</th>
<th>9</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>11</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose (mg)</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>300</td>
<td>300</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Dosing frequency</td>
<td>Q4w x 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q2w x 3</td>
<td></td>
<td>Q1w x 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number CHB in cohort</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>HBeAg pos / HBeAg neg</td>
<td>1/3</td>
<td>0/4</td>
<td>1/3</td>
<td>1/3</td>
<td>4/0</td>
<td>4/0</td>
<td>0/4</td>
<td>1/3</td>
<td>1/3</td>
<td>0/4</td>
<td>13/27</td>
</tr>
<tr>
<td>NUC experienced</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Race (Asian/Pacific Islander/Other)</td>
<td>4/0/0</td>
<td>4/0/0</td>
<td>4/0/0</td>
<td>4/0/0</td>
<td>3/1/0</td>
<td>4/0/0</td>
<td>3/1/0</td>
<td>1/3/0</td>
<td>4/0/0</td>
<td>3/0/1</td>
<td>34/5/1</td>
</tr>
<tr>
<td>Genotype (B/C/D/Unknown)</td>
<td>2/0/0/2</td>
<td>0/0/0/4</td>
<td>0/0/0/4</td>
<td>0/0/0/4</td>
<td>2/2/0/0</td>
<td>0/0/0/4</td>
<td>0/0/0/4</td>
<td>2/1/0/1</td>
<td>1/0/1/2</td>
<td>7/3/1/29</td>
<td>16,435 (10,120)</td>
</tr>
<tr>
<td>Mean baseline HBsAg (SEM) [IU/mL]</td>
<td>2,808 (2,540)</td>
<td>659 (310)</td>
<td>732 (295)</td>
<td>1,128 (625)</td>
<td>137,795 (88,141)</td>
<td>7,358 (2,726)</td>
<td>1,115 (795)</td>
<td>1,573 (429)</td>
<td>7,613 (7,068)</td>
<td>3,564 (1,843)</td>
<td></td>
</tr>
</tbody>
</table>

- Monthly dosing
- Mostly HBeAg negative
- Mostly NUC experienced
- Monthly dosing
- HBeAg positive
- Nuc experienced or naïve
- Shorter dosing intervals
- Every other week or weekly
- Mostly HBeAg negative
- Mostly NUC experienced

• Mean Baseline HBsAg

Yuen MF et al. ILC 12 April 2019, PS-080
Safety and Tolerability

• 168 total doses administered to 56 CHB patients (cohorts 2b through 11)

• No drug related SAEs reported
 • Unrelated SAE of menorrhagia
 • Unrelated SAE of anxiety/depression

• All patients received all 3 scheduled doses; No dropouts

• No dose related pattern of adverse changes in laboratory values (e.g. ALT, AST, total bilirubin, creatinine)

• 17 total AEs at injection site (10% injections) reported (e.g. erythema, tenderness, bruising), all mild

Data as of 3/8/2019
Adverse Events mostly mild without dose related pattern

AEs reported in ≥ 2 CHB patients

<table>
<thead>
<tr>
<th>AE Reported Terms</th>
<th>Cohort 2b Open Label n = 8</th>
<th>Cohort 3b Open Label n = 8</th>
<th>Cohort 4b Open Label n = 8</th>
<th>Cohort 5b Open Label n = 8</th>
<th>Cohort 6 Open Label n = 4</th>
<th>Cohort 7 Open Label n = 4</th>
<th>Cohort 8 Open Label n = 4</th>
<th>Cohort 9 Open Label n = 4</th>
<th>Cohort 10 Open Label n = 4</th>
<th>Cohort 11 Open Label n = 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sore Throat, URTI</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Injection Site Erythema/Redness, Very mild Erythema, Injection Site Rash, Injection Site Hematoma/Brusing, IS Pain</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Raised or Elevation in Creatine Kinase</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Back Ache/Pain</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Acne, Facial Acne</td>
<td></td>
</tr>
<tr>
<td>Bronchitis, Viral Bronchitis</td>
<td></td>
</tr>
<tr>
<td>Diarrhea, Intermittent Diarrhea</td>
<td></td>
</tr>
<tr>
<td>Pain in abdomen, Intermittent Right Upper Quadrant Pain</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Insect Bites ankles, Flea Bites neck</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dizzy, Light headedness</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hot flush</td>
<td></td>
</tr>
<tr>
<td>Presence of calcium oxalate crystals in urine</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dry cough</td>
<td></td>
</tr>
<tr>
<td>Elevated Blood Pressure, Worsening Hypertension</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Other all single occurring terms:</td>
<td></td>
<td>64 Total</td>
</tr>
</tbody>
</table>

(as of 3/8/2019)
All patients receiving 3 monthly doses have achieved > 1 log reduction in HBsAg

- NADIR in HBsAg is reached around 4 months post start of therapy
- Duration of pharmacologic effect persisted for > 4 months after last dose

Yuen MF et al. ILC 12 April 2019, PS-080

(as of 2/28/2019)
Shorter dosing intervals do not accelerate HBsAg decline

Monthly dosing intervals

Mean HBsAg reductions from baseline

- 100 mg (C2b)
- 200 mg (C3b)
- 300 mg (C4b)
- 400 mg (C5b)
- 300 mg E+, NUC naive (C8)
- 300 mg E+, NUC exp (C9)

Shorter dosing intervals

Mean HBsAg reductions from baseline

- 100 mg q2w x 3 (C6)
- 100 mg q1w x 3 (C7)
- 200 mg q1w x 3 (C10)
- 300 mg q1w x 3 (C11)

• Similar NADIR to monthly doses

• All HBsAg patients responded regardless of HBeAg status or previous NUC experience

 • Mean NADIR HBeAg negative (n=27): -1.82 Log10 IU/mL ± 0.09

 • Mean NADIR HBeAg positive (n=13): -2.28 Log10 IU/mL ± 0.21

 • 100% (40 of 40) had ≥ 1.0 Log10 IU/mL HBsAg reduction

Yuen MF et al. ILC 12 April 2019, PS-080 (as of 2/28/2019)
Topic of discussion: Is on-treatment HBsAg level important for HBsAg seroclearance?

HBsAg levels of <100 IU/mL and HBsAg reduction of > 1 Log10 IU/mL have been associated with increased probability of HBsAg seroclearance after cessation of NUCs in HBeAg negative patients.¹

¹ Jeng et al. 2018 Hepatology 68:425-434
Distribution of quantitative HBsAg pre and post 3 doses of JNJ-3989

Baseline
Median: 1263 IU/mL
Min: 7.0 IU/mL
Max: 392,800 IU/mL

NADIR
Median: 14.5 IU/mL
Min: 0.05 IU/mL
Max: 8950 IU/mL

Red Points: HBeAg positive patients
Black Points: HBeAg negative patients

Yuen MF et al. ILC 12 April 2019, PS-080
Most patients (88%) achieve HBsAg ≤ 100 IU/mL after 3 doses of JNJ-3989

<table>
<thead>
<tr>
<th>Baseline HBsAg</th>
<th>Threshold</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>1000 IU/mL</td>
<td>21 of 40</td>
<td>51%</td>
</tr>
<tr>
<td></td>
<td>>100 IU/mL</td>
<td>37 of 40</td>
<td>93%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NADIR HBsAg</th>
<th>Threshold</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤100 IU/mL</td>
<td>35 of 40</td>
<td>88%</td>
</tr>
<tr>
<td></td>
<td>≤10 IU/mL</td>
<td>17 of 40</td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td>≤1 IU/mL</td>
<td>5 of 40</td>
<td>13%</td>
</tr>
</tbody>
</table>

Yuen MF et al. ILC 12 April 2019, PS-080
HBeAg positive patient with post-treatment antigen elevations followed by host response

- Male patient on ETV for 11 years and continued ETV throughout study
 - HBV DNA BLOQ throughout the study
- Patient received 400mg JNJ-3989 q4w x 3
- 3.0 Log10 HBsAg reduction from baseline with recovery beginning 2 mos after last dose
- 2.0 Log10 HBV RNA reduction to LLOQ
- 1.0 Log10 HBcAg and 0.8 Log10 HBeAg reduction
- HBsAg decrease 6 months after last dose following attempted viral return consistent with increased host control of HBV virus (0.054 IU/mL) at 8 months

Yuen MF et al. ILC 12 April 2019, PS-080
Summary and Conclusions

• JNJ-3989 (formerly ARO-HBV) administered subcutaneously was well tolerated at doses up to 400 mg

• RNAi with JNJ-3989 reduced all measurable viral products, including HBsAg in HBeAg positive or HBeAg negative patients

• JNJ-3989 rapidly reduces HBsAg to thresholds possibly associated with improved chances of HBsAg seroclearance in many patients, even after only 3 doses
 • 88% of patients achieved HBsAg <100 IU/mL
 • 100% of patients achieved ≥ 1.0 Log10 IU/mL HBsAg reduction

JNJ-3989 exhibits characteristics desirable for a cornerstone therapy in finite regimens aimed at HBsAg seroclearance in patients with chronic hepatitis B infection
Acknowledgments

• Patients and their families
• All co-authors
• CAB members
 Stephen Locarnini, CL Lai, Carlo Ferrari, Robert Gish
• Queen Mary Hospital
 Kevin Liu, Elvis To, Loey Mak, Michael Ko, Ringo Wu
• Janssen Pharmaceuticals
 Oliver Lenz, Michael Biermer, Ronald Kalmeijer
• Victorian Infectious Diseases Reference Laboratory
 Ros Edwards, Renae Walsh
• Abbott Laboratories
 Emily Butler, Jeffrey Gersch, Gavin Cloherty
• Arrowhead Pharmaceuticals
 Phedellee Reyes, Ran Liu, Caroline LaPlaca Davis