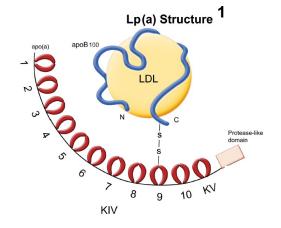


Targeting apolipoprotein(a) with a novel RNAi delivery platform as a prophylactic treatment to reduce risk of cardiovascular events in individuals with elevated lipoprotein(a) Monday, November 14, 2016

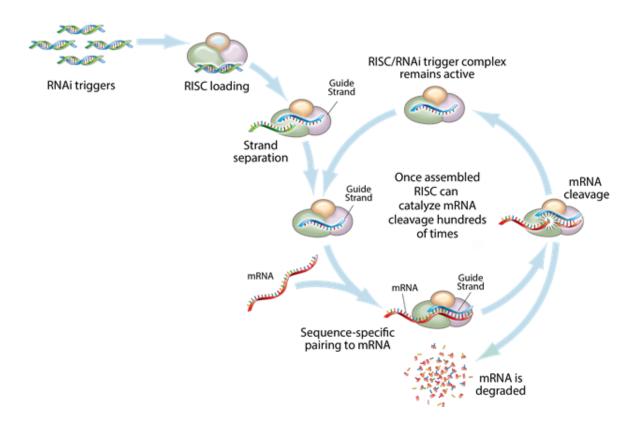
Stacey Melquist


Disclosures

- Financial Relationships
 - S Melquist, D Wakefield, H Hamilton, C Chapman, C Schienebeck, L Almeida, C Klas, C Hagen, A Almeida, J Hegge, Q Chu, E Doss, V Trubetskoy, D Rozema, D Lewis, and S Kanner
 - Employee and stockholder of Arrowhead Pharmaceuticals
 - J Grondolsky and J. Hoover-Plow
 - Grant support from Arrowhead Pharmaceuticals

Lp(a) background

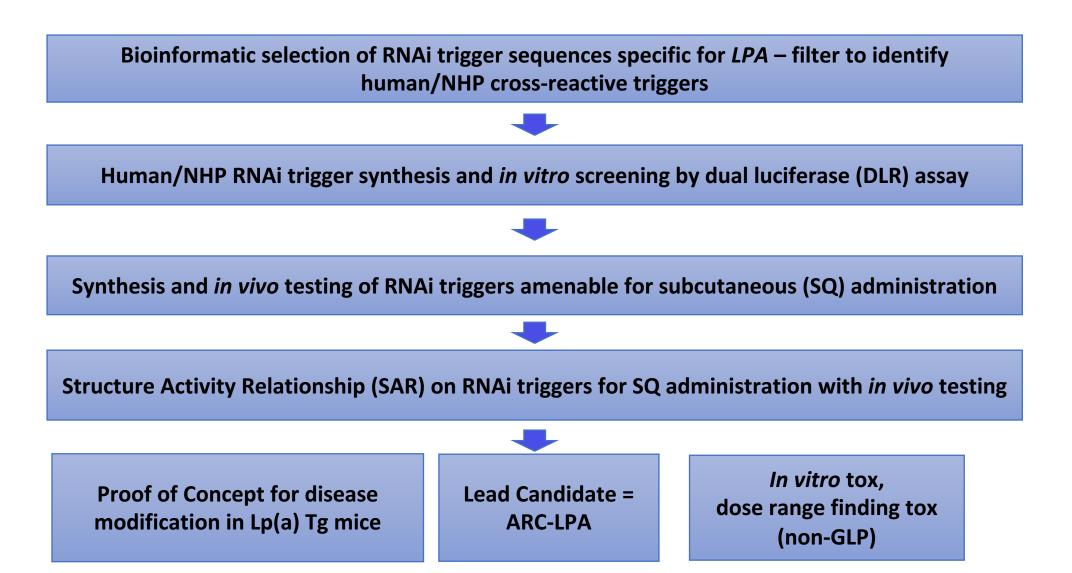
- Lp(a) is a heterogeneous lipoprotein particle expressed predominantly in liver
 - Lipid rich particle composed of apolipoprotein(a) linked to LDL via a disulfide bond to apoB-100
 - Restricted to humans and non-human primates
- Lp(a) levels in humans are genetically defined
 - Levels not changed significantly with diet, exercise, etc.
 - ~25% of US population has >30 mg/dL (normal levels: 0.1 25 mg/dL)
- Lp(a) is an independent risk factor for cardiovascular disease (CVD) through its atherogenic potential
 - Higher levels of Lp(a) correlate with increased risk of CVD²⁻⁴
 - Indications include myocardial infarction, stroke, calcific aortic valve stenosis


¹Hoover-Plow J and Huang M (2013) Metabolism 62:479-491

²Nordestgaard BG *et al.* (2010) Eur. Heart J. 31:2844-2853 ³Clarke R *et al.* (2009) N. Engl. J. Med. 361:2518-2528 ⁴Kampstrup PR *et al.* (2009) JAMA 310:2331-2339

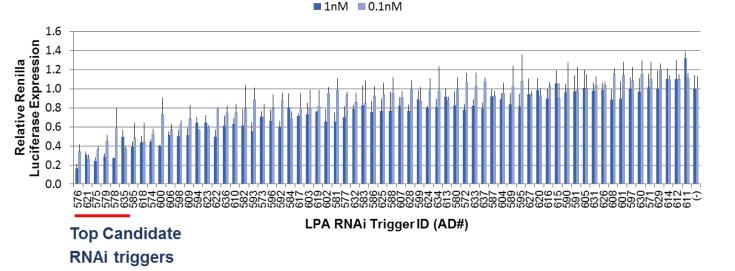
SESSIONS

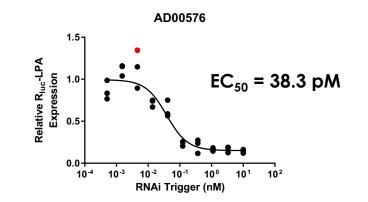
Gene silencing with RNA interference


ARC-LPA RNAi trigger

- Short dsRNA targeting LPA mRNA
- Liver-tropic targeting ligand
- Injected SQ

Liver-tropic targeting ligand


ARC-LPA Screening Funnel



In vitro screening

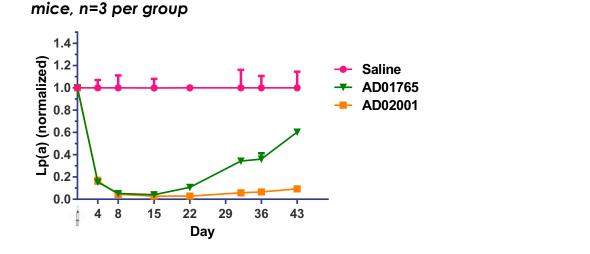
- Huh7 cells co- transfected with:
 - Dual luciferase plasmid
 - RNAi triggers (0.1 or 1 nM)
- Knockdown measured by Renilla/Firefly luciferase ratio

• EC₅₀ determination

Trigger ID	ЕС ₅₀ (рМ)
AD00576	38.3
AD00575	73.5
AD00579	82.8
AD00621	99.6
AD00578	112.1
AD00635	577.4

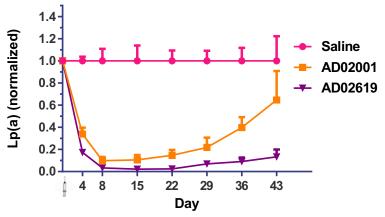
In vivo screening

Since LPA is <u>not</u> expressed in mice, the following animal models were used for screening :


- Transgenic mice
 - apo(a) Tg mice (YAC)¹ and apo(a) Tg mice (cDNA)²
 - Measure apo(a) levels
 - Lp(a) Tg mice (Tg apo(a) x Tg apoB-100)
 - Measure apo(a) and Lp(a) levels
 - Median pretreatment value (range) = 51.4 mg/dL (15.2-92.4)
- Non-human primate (NHP) (Cynomolgus monkey)
 - Measure apo(a) and Lp(a) levels
 - Median pretreatment values (range) =51.6 mg/dL (20.9-108.7)

SESSIONS

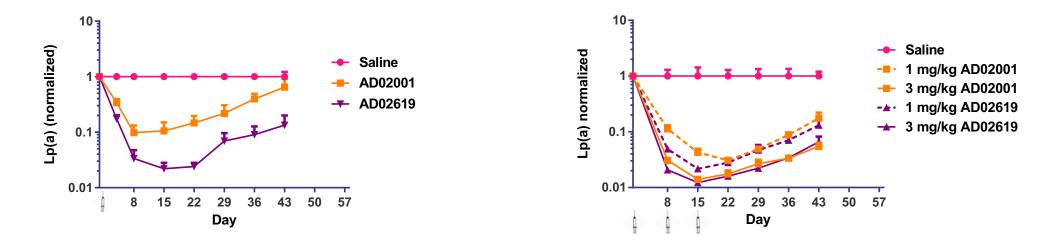
Subcutaneous (SQ) RNAi trigger development


First generation

Single 10 mg/kg SQ RNAi trigger dose in Lp(a) Tg

Second generation

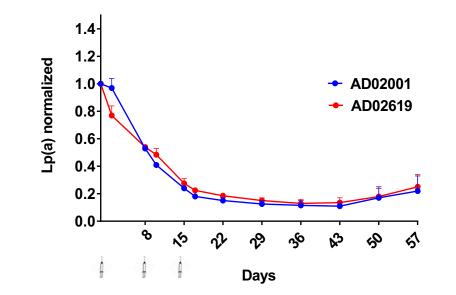
Single <u>3 mg/kg</u> SQ RNAi trigger dose in Lp(a) Tg mice, n=3 per group


- Modifications to AD01765 to yield AD02001 improved both knockdown (97% at nadir) and duration of effect (~90% at 1 month)
- Modifications to AD02001 to yield AD02619 improved knockdown at reduced dose of 3 mg/kg (98% at nadir) and an extended duration of effect (>85% at 6 weeks)

LPA SQ RNAi triggers: single vs multiple dose

<u>Single</u> 3 mg/kg SQ RNAi trigger dose in Lp(a) Tg Mice, n=3/group

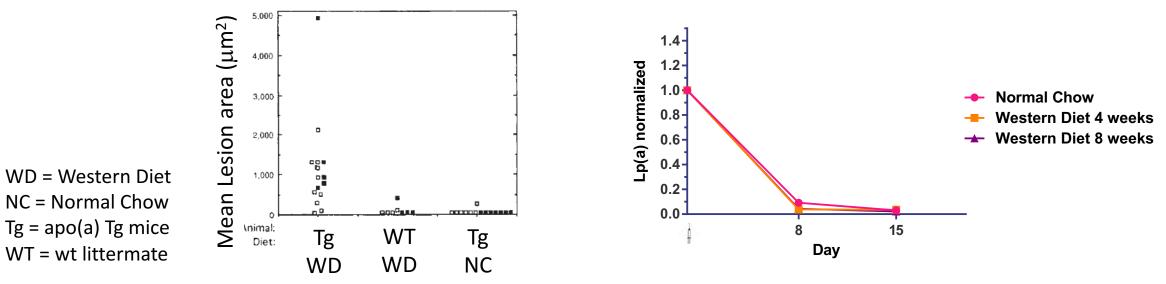
<u>Three weekly</u> SQ RNAi trigger doses (3xqw) in Lp(a) Tg mice, n=4 /group



- Dose response observed for both AD02001 and AD02619
- In multiple-dose studies, both AD02001 and AD02619 exhibit greater depth and duration of knockdown compared to a single dose

LPA SQ RNAi trigger evaluation in NHP

Three weekly 3 mg/kg SQ RNAi trigger doses (3xqw), n=2/group



- RNAi triggers AD02001 and AD02619 exhibit similar depth and duration of Lp(a) reduction in NHP
- Lp(a) reduction of 85-90% observed between days 29 and 43, with >75% knockdown at 6 weeks after the final dose

Atherosclerosis model

- Lipid deposition/atherogenic lesions in aorta of Lp(a) Tg mice fed Western diet
- Can RNAi triggers be effectively delivered to fatty liver?
- After 4 or 8 weeks on Western diet (WD), dose with RNAi trigger

Single 10 mg/kg SQ RNAi trigger dose in Lp(a) Tg Mice, n=4/group

 No significant difference in Lp(a) knockdown in animals on normal chow vs Western diet for 4 or 8 weeks prior to RNAi trigger injection

Summary

 Screening of LPA RNAi triggers in Lp(a) Tg mice identified several that induced substantial and sustained knockdown of serum Lp(a) levels

 SAR studies identified a lead RNAi trigger that exhibited >98% maximal knockdown after a single 3 mg/kg SQ dose in Tg mice

 NHPs treated with 3 weekly 3 mg/kg SQ RNAi trigger doses resulted in 85-90% reduction in serum Lp(a) with >1 month duration of effect

SESSIONS

Acknowledgements

- Jessica Grondolsky
- Jane Hoover-Plow

- Bioassays Team
- Laboratory Animal Resources
- Holly Hamilton
- Christine Chapman
- Crystal Klas
- Julia Hegge
- Qili Chu
- Edie Doss

- Oligo Synthesis Team
- Darren Wakefield
- Lauren Almeida
- Casi Schienebeck
- Collin Hagen
- Aaron Almeida
- Tao Pei
- David Rozema
- Zhen Li
- David Lewis
- Steve Kanner