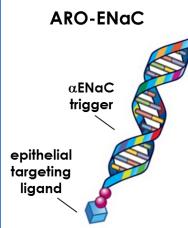
Targeting αENaC with an Epithelial RNAi Trigger Delivery Platform for the Treatment of Cystic Fibrosis

Erik W. Bush¹, Anthony Nicholas¹, Tao Pei¹, Ine Kuipers¹, Weijun Cheng¹, Holly Hamilton¹, Julia Hegge¹, Xiaokai Li¹, Agnieszka Glebocka¹, Rui Zhu¹, Bo Chen¹, Jyoti Srivastava¹, Philip Kuehl², Thomas Schluep³ and Zhen Li¹

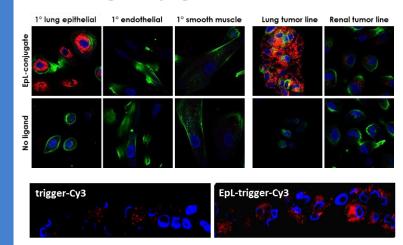
1 Arrowhead Pharmaceuticals Inc., Madison, WI, USA; 2 Lovelace Biomedical, Albuquerque, NM, USA; 3 Arrowhead Pharmaceuticals Inc., Pasadena, CA, USA


RATIONALE

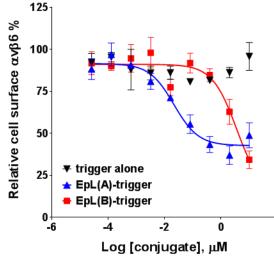
In cystic fibrosis (CF), mutations in the CFTR chloride channel gene are associated with increased epithelial sodium channel (ENaC) activity which contributes to airway dehydration and reduced airway mucociliary transport¹. Hypomorphic ENaC alleles increase mucociliary transport² and modify CF lung disease to milder phenotypes³, but the development of inhaled small molecule inhibitors has been limited by their short duration of action and side effects resulting from renal ENaC inhibition⁴. To enable durable, renal-sparing therapeutic ENaC inhibition for CF, we have utilized Arrowhead's Targeted RNAi Molecule (TRiM[™]) technology to develop ARO-ENaC, an epithelial-targeted conjugate comprised of an optimized RNAi trigger against α ENaC paired with an epithelial targeting ligand (EpL) to the integrin $\alpha v\beta 6$ receptor⁵.

METHODS

- *In vitro* uptake by cultured cells was evaluated by fluorescence microscopy. Tracking conjugates were prepared by conjugating EpL ligands to Cy3-labeled polyacrylate polymer or to Cy3-labeled RNAi triggers
- Integrin $\alpha \nu \beta 6$ receptor-mediated endocytosis of EpL-RNAi conjugates was quantitated by on-cell Western receptor internalization assay (OCW-RIA) in HT29 cells with an antibody to the integrin $\alpha v\beta 6$ receptor
- Three versions (v1-3) of EpL- α ENaC RNAi trigger conjugate were studied, employing different $\alpha\nu\beta6$ ligands and configurations, linker chemistries and trigger modifications
- Rats received intratracheal (IT) or oropharyngeal (OP) doses of EpL-RNAi trigger conjugate or RNAi trigger alone; total RNA was isolated from whole lung and kidney homogenates and mRNA expression analyzed by qPCR. Protein expression was evaluated by immunohistochemistry (IHC) with a polyclonal antibody to α ENaC
- For nose-only inhalation studies, rats were exposed to EpL-RNAi trigger conjugate aerosolized with an Aeroneb Solo vibrating mesh nebulizer. Deposited pulmonary doses were calculated using the respiratory minute volume, aerosol concentration, exposure time, deposition fraction (estimated at 10%), and body weight

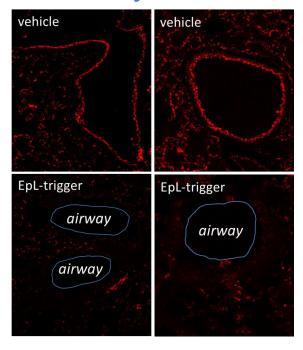

TRiM[™] platform

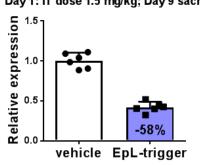
- Rules and algorithms allow selection of optimized RNAi trigger sequences
- Limit cross-reactivity with off-target genes
- Maximize innate stability
- Rational use and placement of modifying chemistries
- Active endosomal escape chemistries not required Targeting ligands and linker chemistries improve delivery to target tissues
- Integrin $\alpha v\beta 6$ ligands facilitate pulmonary epithelial uptake and endocytosis of triggers

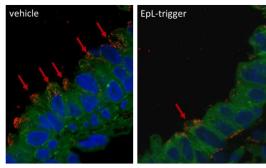

RESULTS

$\alpha v\beta 6$ ligands facilitate epithelial uptake of Cy3-labeled tracking conjugates

• EpL ligands enhance uptake of Cy3-labeled RNAi trigger in primary human bronchial epithelial cells maintained in ALI culture (lower panel)


Quantitation of $\alpha v\beta 6$ receptor mediated endocytosis of EpLtrigger conjugates by OCW-RIA


 HT29 cells were exposed to RNAi trigger alone or trigger conjugated to 2 different EpL ligands (A or B)

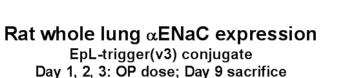

- receptor internalization monitored by antibody bound to cell surface
- with IC₅₀ values of 21 nM or 3597 nM

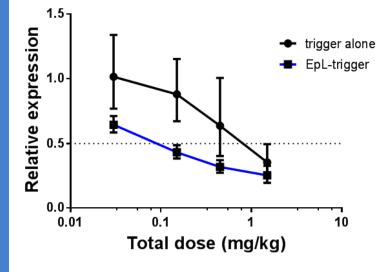
EpL-trigger conjugates eliminate expression of α **ENaC protein** in rat airways

Rat whole right lung aENaC expression EpĽ-trigger(v2) conjugate Day 1: IT dose 1.5 mg/kg; Day 9 sacrifice

 Immunohistochemistry with a custom polyclonal antibody and confocal imaging confirm⁶ α ENaC protein (red) is most abundant in airway epithelium; distal alveolar epithelium expresses lower levels of α ENaC protein

• In airways, α ENaC protein is localized to cilia of bronchial epithelial cells, confirming previous observations⁶

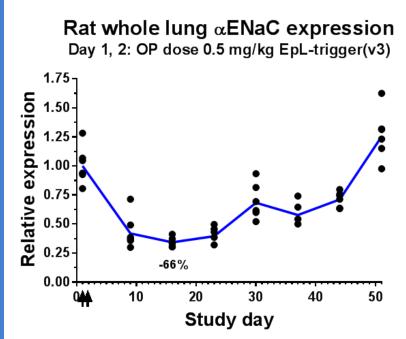

• Single IT doses of EpL- α ENaC RNAi trigger that produce ~50% whole lung α ENaC mRNA knockdown on Day 9 are associated with significantly reduced airway epithelial α ENaC protein expression; remaining α ENaC protein predominantly restricted to distal alveolar epithelium


EpL platform increases trigger potency 10x and improves uniformity of whole lung *a*ENaC mRNA knockdown

 Cy3-labeled tracking polymer (red) conjugated to $\alpha v\beta 6$ (EpL) ligands are selectively endocytosed by $\alpha v\beta 6$ + epithelial cells *in vitro* (upper panel)

• Trigger alone does not stimulate $\alpha v\beta 6$

 Trigger conjugated to EpL(A) or EpL(B) stimulates $\alpha \nu \beta 6$ receptor internalization

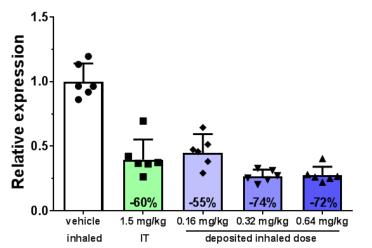


• Rats received three q.d. OP doses of α ENaC RNAi trigger alone or EpL-trigger conjugate and sacrificed six days after last dose

 EpL-trigger conjugate reduces - EpL-trigger lung αENaC mRNA expression >50% with a total dose of 0.15 mg/kg. Equivalent knockdown with trigger alone requires 1.5 mg/kg

> • EpL targeting improves uniformity of lung knockdown at low exposures, consistent with improved delivery to airway epithelium

EpL-trigger conjugates mediate durable whole lung α ENaC mRNA knockdown

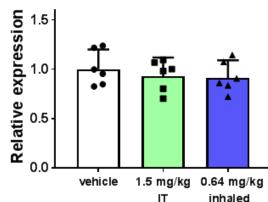

• Rats received two q.d. OP doses of EpL-trigger conjugate; treatment groups were sacrificed weekly

 Maximum reduction in lung α ENaC mRNA (nadir) is 2 weeks after dosing; expression fully recovers between 6-7 weeks post-dose

> Durability of knockdown supports an every other week maintenance dose regimen. With other targets, duration of knockdown in primates is typically longer than rodents

Aerosol inhalation of EpL-trigger produces equivalent whole lung αENaC mRNA knockdown at 10x lower exposure

Rat whole lung a ENaC expression EpL-trigger(v2) conjugate; nose-only inhaled aerosol Day 1 exposure; Day 9 sacrifice



 Rats received a single IT dose or inhaled aerosol exposure of EpL-trigger conjugate and were sacrificed 8 days later

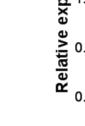
 Nose-only aerosol inhalation improves efficiency of EpLtrigger delivery, producing an equivalent reduction in α ENaC mRNA expression at a 10-fold lower exposure than an IT dose

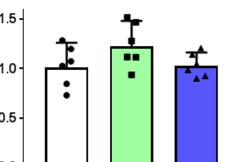
EpL-trigger conjugates mediate lung knockdown with no effect on lung CFTR or kidney αENaC mRNA expression

Rat whole lung CFTR expression EpL-trigger(v2) conjugate Day 1 exposure; Day 9 sacrifice

• At IT and aerosol exposures that reduce lung α ENaC mRNA expression by 60% and 72% respectively, no changes are observed in lung CFTR chloride channel or kidney α ENaC mRNA expression

CONCLUSIONS


- cultured epithelial cells
- lung α ENaC mRNA at lower doses
- protein expressed in alveolar epithelium
- baseline expression
- changes in renal α ENaC mRNA expression
- employ the pulmonary epithelial delivery platform


REFERENCES

- 1. Hobbs C et al. (2013) J Physiol 591:4377-4387
- 2. Kerem E et al. (1999) N Engl J Med 341:156-161
- 3. Agrawal P et al. (2017) Am J Respir Cell Mol Biol 57:711-720
- 5. Sheppard D (2003) Physiol Rev 83:673-686
- 6. Enuka Y et al. (2012) Histochem Cell Biol 137:339-353

arrowhead pharmaceuticals

vehicle 1.5 mg/kg 0.64 mg/kg

Rat whole kidney a ENaC expression

EpL-trigger(v2) conjugate

Day 1 exposure; Day 9 sacrifice

EpL integrin $\alpha v\beta 6$ receptor ligands improve endocytosis of RNAi triggers in

EpL conjugates employing ligands to the integrin $\alpha v\beta 6$ receptor improve functional delivery of an α ENaC RNAi trigger to the pulmonary epithelium after inhalation, producing deeper and more consistent reduction of whole

Loss of airway epithelial α ENaC protein expression is observed at exposures that produce ~50% reduction in whole lung α ENaC mRNA, with remaining

Reduction of lung α ENaC mRNA expression is durable, maintaining >50% knockdown at 3 weeks post-dose and requiring 6-7 weeks for recovery to

Aerosol inhalation improves delivery efficiency of EpL- α ENaC RNAi trigger conjugates approximately tenfold over intratracheal administration

EpL- α ENaC RNAi trigger conjugates are well-tolerated with no observed

ARO-ENaC for cystic fibrosis is Arrowhead's first therapeutic candidate to

The ability of the EpL-RNAi platform to facilitate functional delivery of RNAi triggers to the lung suggests that additional therapeutic targets in the pulmonary epithelium could be considered, particularly those that are currently inaccessible to traditional small molecule or antibody approaches

4. O'Riordan T et al. (2014) J Aerosol Med Pulm Drug Deliv 27:200-208